
Project number: 101111888
Project acronym: SHIMMER
Project duration: 09/2023 – 08/2026
Project Coordinator:
Andrea Alvarado Shmueli, SINTEF AS –
Institute SINTEF Industry

Horizon Europe Framework Programme
(HORIZON)

HORIZON-JTI-CLEANH2-2022-05-03

Safe hydrogen injection management at
network-wide level: towards European gas
sector transition

Safe Hydrogen Injection Modelling and
Management for European gas network
Resilience

D4.4 Open-source fluid-dynamic model with gas quality
tracking (handbook)

VERSION
1.1

DATE
09.12.2025

TYPE
Report

DISSEMINATION LEVEL
PU

ABSTRACT

One of the main objectives of this project is to develop an open-source fluid-dynamic model with gas quality
tracking. Its name is Shimmer ++ and this deliverable serves as a handbook for installation and use,
documenting model formulation, database schema, and numerical methods to support reproducible
hydrogen-blending and renewable-gas integration studies, while providing the basis for future functional
extensions.
Shimmer++ made available on a public GitHub repository. The model is implemented as an efficient C++
solver and structured to performs both steady-state and transient simulations and explicitly handles multi-
species transport and admixing at network nodes. Gas thermophysical properties are computed using the
GERG-2008 equation of state, enabling accurate evaluation of compressibility and supporting mixtures with
up to 21 chemical species.
Designed to complement rather than replace commercial simulators, Shimmer++ emphasizes transparency
and user extensibility. It follows a file-based approach without a graphical user interface, but the public
GitHub repository provides examples for scripting and integration with external environments such as GIS
From a user standpoint, the software adopts a three-layer architecture centred on Network Data Files
(NDFs), i.e., SQLite databases storing topology, asset characteristics, boundary conditions, gas properties,
and simulation outputs.
A typical workflow involves initializing an NDF, populating it with network data, specifying simulation
settings via a lightweight Lua configuration file, running the solver, and post-processing results directly from
the updated NDF.

D4.4 – Open-source fluid-dynamic model with
gas quality tracking

Version: 1.1 Date: 09.12.2025

The research leading to these results has received funding from Horizon Europe, the European Union's
Framework Programme for Research and Innovation under grant agreement n° 101111888.

2 of 56

AUTHORSHIP AND APPROVAL INFORMATION

AUTHOR(S)
Marco Cavana / PoliTo
Karol Cascavita / PoliTo
Matteo Cicuttin / PoliTo
Fabio Vicini / PoliTo
Angelo Spadavecchia / PoliTo
Luisa Di Francesco / PoliTo
Stefano Berrone / PoliTo
Pierluigi Leone / PoliTo

DATE / SIGN
05.12.2025

REVIEWED BY WP-LEADER
Huib Blokland / TNO

DATE / SIGN
09.12.2025

APPROVED BY COORDINATOR
Diana González / SINTEF

DATE / SIGN
09.12.2025

CO-FUNDED BY THE EUROPEAN UNION. VIEWS AND OPINIONS EXPRESSED ARE HOWEVER THOSE OF THE AUTHOR(S) ONLY AND
DO NOT NECESSARILY REFLECT THOSE OF THE EUROPEAN UNION OR THE CLEAN HYDROGEN JOINT UNDERTAKING. NEITHER THE
EUROPEAN UNION NOR THE GRANTING AUTHORITY CAN BE HELD RESPONSIBLE FOR THEM.

ValidSigned by Huib Blokland
 on 2025-12-09 08:56:52

Diana González (Dec 9, 2025 10:07:32 GMT+1)

https://sintef.eu1.echosign.com/verifier?tx=CBJCHBCAABAAeza5NgnXZjlScn9m8VNyDaal5NGS1Mi8

D4.4 – Open-source fluid-dynamic model with
gas quality tracking

Version: 1.1 Date: 09.12.2025

The research leading to these results has received funding from Horizon Europe, the European Union's
Framework Programme for Research and Innovation under grant agreement n° 101111888.

3 of 56

Release history
VERSION DATE VERSION DESCRIPTION

01 06.11.2025 First draft for review (in the form of Handbook)

1.0 05.12.2025 Final version

1.1 09.12.2025 Final version (typos corrections)

D4.4 – Open-source fluid-dynamic model
with gas quality tracking Version: 1.1 Date: 09/12/2025

Table of Contents
Executive Summary 6

1 Introduction 7
1.1 Purpose of the document . 7
1.2 Intended readership . 7
1.3 Structure of this document . 8

2 Background, aims and motivation 9

3 Installation 11
3.1 Preparing a Linux environment . 11
3.2 Preparing a Windows environment . 11
3.3 Building shimmer++ . 11
3.4 Running Shimmer++ . 12
3.5 Shimmer++ organization . 13

4 Model description 14
4.1 Nodal station types . 15

4.1.1 Pressure regulated entry station without backflow . 15
4.1.2 Mass Flow regulated entry station with pressure control 16
4.1.3 Junctions . 17
4.1.4 Exit Stations (consumption points) . 17

4.2 Branch element types . 18
4.2.1 Compression Station . 18
4.2.2 Pipelines . 19

4.3 Overall Network Model Rationale . 19
4.4 Nomenclature and unit of measurments . 20

5 Network Data Files 21
5.1 Database schema: nodal elements (stations) . 21

5.1.1 Station types . 21
5.1.2 Stations List . 22
5.1.3 Limits and profiles: Pressure regulated entry station w/o backflow (ReMi station) 22
5.1.4 Limits and profiles: Mass flow regulated entry station w/ pressure control (Injection station) 23
5.1.5 Limits and profiles: Consumption station . 24
5.1.6 Gases . 25
5.1.7 Gas molar fractions . 26

5.2 Database schema: branch elements (pipelines and non-pipe elements) 28
5.2.1 Branch element types . 28
5.2.2 Plain pipes . 28
5.2.3 Compressor stations . 29

5.3 Database schema: network initial conditions . 30
5.3.1 Initial conditions for nodes . 30
5.3.2 Initial conditions for branches . 31

5.4 Database schema: simulation outputs . 31
5.5 Automatic NDF Creation: sample code in Matlab environment . 33

The research leading to these results has received funding from Horizon Europe, the European Union’s
Framework Programme for Research and Innovation under grant agreement no 101111888. 4 of 56

D4.4 – Open-source fluid-dynamic model
with gas quality tracking Version: 1.1 Date: 09/12/2025

6 Developer zone 35
6.1 In memory representation . 35

6.1.1 Define the graph . 36
6.1.2 Add nodes specification . 36
6.1.3 Add pipes specification . 37
6.1.4 Incidence matrix A . 38

6.2 Stations . 38
6.2.1 One state station . 40
6.2.2 Multiple states station . 41

6.3 Numerical methods stage . 42
6.3.1 Friction factor . 44
6.3.2 Viscosity . 44
6.3.3 Equation of state - Gas dynamics relations . 45

6.4 Fluid solver . 46
6.5 Time solver . 49
6.6 Quality tracking . 49

6.6.1 The model for transport of gas species . 50
6.6.2 Transport through pipes: quality tracking . 51
6.6.3 Nodal mass balance: Admixing . 51
6.6.4 Quality tracking solver . 52

7 Conclusions 54

The research leading to these results has received funding from Horizon Europe, the European Union’s
Framework Programme for Research and Innovation under grant agreement no 101111888. 5 of 56

D4.4 – Open-source fluid-dynamic model
with gas quality tracking Version: 1.1 Date: 09/12/2025

Executive Summary
This deliverable reports the completion and release of the open-source fluid-dynamic model with gas qual-
ity tracking for the simulation of natural gas infrastructures under hydrogen blending scenarios. This
is one of the main outcomes of the SHIMMER project, and was planned to support the ongoing transi-
tion of natural-gas infrastructures to renewable and low-carbon gases, especially hydrogen where gas qual-
ity tracking becomes essential for operational feasibility, safety and energy billing, requiring a detailed
network-wide assessment. The model is called Shimmer++, and it is publicly accessible at the repository
at https://github.com/shimmerhydrogen/shimmer. This includes the Shimmer++ sources and some docu-
ments related to the underlying physical model, along with the GitHub issues that record the developments of
Shimmer++.

Shimmer++ is an efficient C++ computational tool for steady-state and transient (unsteady) simulation
of transmission and distribution gas networks, including multi-species mixtures tracking and admixing at
nodes. Up to 21 chemical species can be included as the model uses the GERG-2008 equation of state for the
calculation of the gas compressibility factor. Shimmer++ is designed to enable quick, transparent simulation
for distributed injections of non-conventional gases, complementing —rather than replacing— commercial
software packages. The way it has been structured was intended to be as flexible and as customizable as
possible, giving the users the possibility to personalize and expand its functions. The tool is file-based and
does not include a graphical user interface. However, examples are given within the repository on how to
set up scripts to facilitate integration with other environments, such as GIS or any other data visualization
means. From a user perspective, Shimmer++ adopts a three-layer architecture centered on Network Data Files
(NDFs): SQLite databases that store network topology, asset features, boundary conditions, gas properties,
and simulation outputs. A typical workflow is: create/initialize an NDF, populate it with network data, define
simulation parameters in a small Lua configuration file, run the solver, and post-process results directly from
the updated NDF.

This document is intended to be the handbook to guide any future user through the use of Shimmer++. It
documents the instructions for the installation, some theoretical background on model formulation, database
schema, and numerical methods, providing researchers and practitioners with a reproducible reference to
apply Shimmer++ to hydrogen blending and renewable-gas integration studies and even the basic information
to optionally extend some functionalities.

About the project: The European natural gas infrastructure provides the opportunity to accept hydrogen
(H2), as a measure to integrate low-carbon gases while leveraging the existing gas network and contributing
to decarbonisation. However, there are technical and regulatory gaps that should be closed, adaptations and
investments to be made to ensure that multi-gas networks across Europe will be able to operate in a reliable
and safe way while providing a highly controllable gas quality and required energy demand. Aspects such as
material integrity of pipelines and components, as well as the lack of harmonisation of gas quality requirements
at European level must be addressed in order to facilitate the injection of H2 in the natural gas network.

In this context, the SHIMMER project (Safe Hydrogen Injection Modelling and Management for European
gas network Resilience) was selected for funding as part of the 2023 Clean Hydrogen Partnership programme.
SHIMMER aims to enable a higher integration of low-carbon gases and saferH2 injection management in multi-
gas networks by strengthening the knowledge base and improving the understanding of risks and opportunities
in H2 projects.

It will do this by:

• Mapping and assessing European gas T&D infrastructure in relation to materials, components, technol-
ogy, and their readiness for hydrogen blends.

• Defining methods, tools and technologies for multi-gas network management and quality tracking,
including simulation, prediction, and safe management of network operation in view of widespread
hydrogen injection in a European-wide context.

• Proposing best practice guidelines for handling the safety of hydrogen in the natural gas infrastructure
and managing the risks.

The research leading to these results has received funding from Horizon Europe, the European Union’s
Framework Programme for Research and Innovation under grant agreement no 101111888. 6 of 56

https://github.com/shimmerhydrogen/shimmer

D4.4 – Open-source fluid-dynamic model
with gas quality tracking Version: 1.1 Date: 09/12/2025

1 Introduction

1.1 Purpose of the document
This report provides a comprehensive overview of the open-source fluid-dynamic model with quality tracking
developed as a Shimmer project deliverable (D4.4). The open-source model’s name is Simmer++. Being
Shimmer++ itself the deliverable (deliverable type: “DATA”) according to the project DoA, this document aims
to:

• specify the open-source model location: it is publicly accessible at the GitHub repository: https://
github.com/shimmerhydrogen/shimmer;

• give the detailed instructions on how to install and run Shimmer++;

• describe the Network Data Files (database schema) and how to create/populate them;

• illustrate the overall gas network modelling approach and indicate further scientific literature references
for the detailed description;

• provide and in-depth description of the most relevant sections of the code, to allow advanced user to
customize the tool.

1.2 Intended readership
The intended audience and the respective added benefit for each body includes:

• Universities/training entities: the model can be widely used as an educational tool without any re-
strictions and expenditures concerning license, fostering the knowledge on natural gas infrastructure, its
transition and how to manage it.

• Universities/Research Institutes: the model is a ready-to-use tool for studies regarding the infrastructural
transition towards hydrogen and renewable gases (biomethane, sNG. . .) without the commitment of
buying a commercial software license. Unlike the commercial softwares, being open-source and publicly
accesible allows for customization, improvement and integration with other other open-source models
and tools (provided that the reserchers have a good background on gas network modelling and coding
languages)..

• System Operators (transmission and/or distribution): the model can be used within the research and
development departments, preferably by persons who received preliminary training, to carry out strategic
industrial research in a smart, flexible and agile way. Being open source, the product does not commit
the company with expenses, does not constraint the working group to interaction and assistance with
the software house and in general, gives a much more flexible and customizable tool (provided that the
employees have a good background on gas network modelling and coding languages).

Readers of this document are expected to have existing knowledge about the transmission and distribution
gas networks. Basic knowledge and skills about coding and open-source environment would ease the reader
into the fast execution of some of the installation commands and the understanding of some coding parts.
However, following the instructions given within this document, any common software user is enabled to use
the model and the knowledge of C++ language is not necessary to run the model and get results from the
desired simulation of case studies.

The research leading to these results has received funding from Horizon Europe, the European Union’s
Framework Programme for Research and Innovation under grant agreement no 101111888. 7 of 56

https://github.com/shimmerhydrogen/shimmer
https://github.com/shimmerhydrogen/shimmer

D4.4 – Open-source fluid-dynamic model
with gas quality tracking Version: 1.1 Date: 09/12/2025

1.3 Structure of this document
This document is organized as follows.

In Section 2, an overview of the background, the aims and the motivations behind the creation of an open-
source simulation tool of gas networks is given. In Section 3, a thorough step by step installation procedure
for Shimmer++ is shown. The description of the overall network model with the modeling of relevant network
element is given in Section 4. Section 5 is devoted to the description of the database. The discussion about
the numerical methods stage, including the model and the discrete setting for the mixing and transport of gas
species are illustrated in Section 6. Finally, short conclusions and future exploitation possibilities are briefly
commented in Section 7.

The research leading to these results has received funding from Horizon Europe, the European Union’s
Framework Programme for Research and Innovation under grant agreement no 101111888. 8 of 56

D4.4 – Open-source fluid-dynamic model
with gas quality tracking Version: 1.1 Date: 09/12/2025

2 Background, aims and motivation
In the framework of transitioning the natural gas infrastructure towards the inclusion of renewable gases such
as biomethane and, overall, hydrogen, the need for simulation tools able to perform quality tracking at all
network levels is becoming more and more urgent. For example, already in the case of biomethane, its injection
on a local distribution network can cause a non-negligible perturbation of the gas quality. Even though in first
approximation biomethane and natural gas can be treated as the same gas, when it comes to energy billing, the
capability to distinguish two gases with different composition (and so different calorific values) can become
a necessity, even at local level. This is even more true when hydrogen blending is considered as a possible
integration pathway. Hydrogen, in fact, has completely different features than natural gas and it is not a natural
compound of natural gas. Thus, even lower concentrations of hydrogen (∼ 2%) can be unacceptable by some
network users (e.g. gas refuelling stations).

The project SHIMMER - Safe Hydrogen Injection Modelling and Management for European gas network
Resilience - has among its aims, the release of an open-source simulator of natural gas infrastructure with
quality-tracking and admixing features, that can be use to simulate cases with distributed injection of renewable
gases within a network infrastructure transporting or distributing natural gas with its specific composition.
According to the ends of the project, the main focus is the simulation of hydrogen blending cases. The release
of an open source tools with such capabilities would ease the academia, research companies and industries to
handle scenarios of non-conventional use of their infrastructure, allowing them to address feasibility studies
and, in general, acquire knowledge and experience in an open and quick way. On the other hand, this tool is
not to be intended as a substitute of commercial softwares, which offer not only reliable tools but a variety of
customization options and aftersale services which are out of the scope of this SHIMMER project outcome.

The aim of Shimmer++ development is to build an efficient open-source tool in C++ for the numerical
modelling of natural gas transport through a long-distance network or natural gas distribution through local
distribution networks. Shimmer++ is capable of steady and unsteady state simulations with mixture of gases,
to take into account - for instance - hydrogen blending. Other tools exists, either open-source and commercial.
As for open-source ones, to mention some: GasNetSim, pandapipes and MORGEN. The first was presented
recently in https://ieeexplore.ieee.org/document/9769148, where authors argued GasNetSim is the first
open-source tool that allows complex mixture composition of gases. This salient advantage can be only
exploited for steady regime. The second library has less model flexibility and, as in the former, is written
Python. The latter stands for Model Reduction for Gas and Energy Networks, which is an academic tool
developed in Matlab based on the isothermal Euler equations and does not perform any quality tracking. As
for commercial tools, the quality tracking feature is commonly implemented and used by Transmission System
Operators (TSOs) in order to keep track of natural gas composition perturbations and/or perturbation in the
calorific feature of the gas. Some of the most popular ones are SIMONE, OLGA and SAINT. To be noticed that
these softwares are mainly used by TSOs on their regional or nation wide networks, while local Distribution
System Operators (DSOs) usually do not need such advanced features as the natural gas flowing in their
infrastructure is commonly homogeneous in composition.

Shimmer++ is a purely computational tool mainly intended to interact with other software, for example GIS
programs. Therefore, Shimmer++ does not provide a graphical user interface and the interaction is file-based.

The Shimmer++ tool is based on the architecture shown in Fig. 1. The main functional domains are the
on-disk gas network representation, the in-memory representation, and the numerical methods operating on
the networks. From the users’ point of view this three-layer architecture translates to the following:

• the on-disk representation is realized by the the Network Data Files (NDFs), which are SQLite databases
where the gas networks are stored and are the main interaction mechanism between Shimmer++ and the
user (where the user is potentially another software)

• the in-memory representation and the numerical methods layer are the actual shimmer++ tool, which
reads and writes NDFs

The research leading to these results has received funding from Horizon Europe, the European Union’s
Framework Programme for Research and Innovation under grant agreement no 101111888. 9 of 56

https://ieeexplore.ieee.org/document/9769148

D4.4 – Open-source fluid-dynamic model
with gas quality tracking Version: 1.1 Date: 09/12/2025

Station
properties

Pipeline
properties

Network
data file

File I/O

Matrix
assembly

On-disk representation In-memory representation Numerical methods

Gas
properties

Figure 1: System architecture scheme.

The typical workflow of a Shimmer++ session is as following:

• Create an empty Network Data File (NDF) based on the Shimmer++ database schema

• Populate the NDF with the network data (either manually or from other codes)

• Provide a small configuration file with the simulation parameters

• Run the tool

• Read the results from the NDF and postprocess them with the appropriate software

The research leading to these results has received funding from Horizon Europe, the European Union’s
Framework Programme for Research and Innovation under grant agreement no 101111888. 10 of 56

D4.4 – Open-source fluid-dynamic model
with gas quality tracking Version: 1.1 Date: 09/12/2025

3 Installation
The repository at https://github.com/shimmerhydrogen/shimmer includes the Shimmer++ sources, the orig-
inal matlab code on which Shimmer++ is based (it is not a direct translation) and some documents related to
the underlying physical model, along with the github issues that record the developments of Shimmer++.

3.1 Preparing a Linux environment
As first step you should make sure that your system is up-to-date. For Debian-based operating systems:

sudo apt update

The next step is to install the dependencies which are SQLite, Eigen and the Boost Graph Library (BGL). SQLite
is a file-based relational database used to store the gas networks, Eigen is concerned with the linear algebra
and the BGL is a graph library used to represent the networks in-memory. The development environment
for Shimmer++ is based on the CMake build system and GCC or Clang compilers. Shimmer++ is written in
C++20, therefore a relatively recent compiler is needed. To install the dependencies on Debian-based operating
systems:

sudo apt install -y make cmake build-essential git ctest
sudo apt install -y libsqlite3-dev lua5.4
sudo apt install -y libeigen3-dev
sudo apt install -y libboost-graph-dev libboost-dev

3.2 Preparing a Windows environment
Shimmer++ does work on Windows, however it is not the preferential platform. On Windows, Shimmer++ can
be compiled via MSYS2, available for download at https://www.msys2.org/.

Once you have MSYS2 set up, launch the “MSYS2 UCRT64” shell and install the Shimmer++ prerequisites:

pacman -S --needed base-devel
pacman -S --needed mingw-w64-ucrt-x86_64-toolchain
pacman -S --needed mingw-w64-ucrt-x86_64-boost
pacman -S --needed mingw-w64-ucrt-x86_64-lua
pacman -S --needed mingw-w64-ucrt-x86_64-eigen3
pacman -S --needed mingw-w64-ucrt-x86_64-make
pacman -S --needed mingw-w64-ucrt-x86_64-cmake
pacman -S --needed mingw-w64-ucrt-x86_64-ninja
pacman -S --needed git sqlite

3.3 Building shimmer++
You can now clone the shimmer++ repository using

git clone https://github.com/shimmerhydrogen/shimmer.git

or, if you have access to edit:

git clone git@github.com:shimmerhydrogen/shimmer.git

Some submodules need to be installed. To do that run:

git submodule init
git submodule update

The research leading to these results has received funding from Horizon Europe, the European Union’s
Framework Programme for Research and Innovation under grant agreement no 101111888. 11 of 56

https://github.com/shimmerhydrogen/shimmer
https://www.msys2.org/

D4.4 – Open-source fluid-dynamic model
with gas quality tracking Version: 1.1 Date: 09/12/2025

Now you need to change directory and go into the directory shimmer++

cd shimmer/shimmer++

To build Shimmer++ we advise to create the builddirectory inside your working copy and build Shimmer++
from there:

mkdir build

enter inside the directory build

cd build

and then run cmake to create the CMake files

cmake ..

and finally build the code using

cmake --build .

The commands above will produce, among others, an executable named shimmer_solver in the directory
shimmmer/shimmer++/build.

Shimmer++ can be installed in the system by running

make install

from the build directory. By default, Shimmer++ is installed in /usr/local, in particular the solver executable
will be installed in /usr/local/bin, the libraries in /usr/local/lib and the database schema plus an example
configuration file will be placed in /usr/local/share. The installation prefix can be changed by setting
appropriately the CMAKE_INSTALL_PREFIX variable when running CMake.

3.4 Running Shimmer++
Shimmer++ input/output is done via NDFs, which are SQLite databases with a specific structure. The database
schema employed by the NDFs is provided in the source tree at shimmer/shimmer++/share/shimmer.sql.

The first step to interact with Shimmer++ is therefore initializing appropriately a NDFs, and this can be
done in two ways.

The first way is to use directly the Shimmer++ solver as following:

shimmer_solver --init-db newndf.db

The last command initializes an empty NDF file named newndf.db.

The second way is to use directly the sqlite3 tool and the provided shimmer.sql file. Therefore, assum-
ing that you want to create a new, empty NDF named newndf.db and that you have the NDF schema file
shimmer.sql in the current folder, to initialize a new database:

sqlite3 newndf.db < shimmer.sql

Remark. Once the NDF is created, it remains empty. The user must fill in all relevant data tables before running
the simulation. The NDF can be populated either manually using an SQLite graphical frontend (e.g., SQLite Browser,
https://sqlitebrowser.org/), directly through SQL statements with the sqlite3 tool, or programmatically via
different programming languages. Manual manipulation of the database is strongly discouraged, as it is a tedious and
error-prone process. Except for debug situations, interaction with NDFs should always happen via custom scripts or third
party tools. In the shimmer++ git repository, we provide an example of a simple MATLAB tool that populates the NDF
from a MATLAB graph network. In addition, in shimmer/shimmer++/src/utils/dbscripts some Python script to
aid filling the NDFs are provided. See Section 5.5 for more details.

The research leading to these results has received funding from Horizon Europe, the European Union’s
Framework Programme for Research and Innovation under grant agreement no 101111888. 12 of 56

https://sqlitebrowser.org/

D4.4 – Open-source fluid-dynamic model
with gas quality tracking Version: 1.1 Date: 09/12/2025

Remark. The file shimmer.sqlmust be present in ${CMAKE_INSTALL_PREFIX}/share, in the current work directory or
in a subdirectory named sqlite inside the current work directory. Alternatively, it is possible to specify the fully-qualified
path of shimmer.sql via the SHIMMER_SCHEMA_FILE environment variable.

Once the database is ready, a small configuration file is needed. Shimmer++ configuration files are written
in the Lua programming language. For example:

config.database = "newndf.db" -- Path of the NDF
config.steps = 7 -- Timesteps of the simulation
config.dt = 3600 -- delta-t between timesteps
config.dx = 300e3 -- pipe refinement step
config.tol = 1e-4 -- fluid-dynamic solver tolerance - unsteady cycle
config.tol_std = 1e-14 -- fluid-dynamic solver tolerance - steady cycle
config.refine = false -- refine pipes
config.quality_tracking = false -- Use quality tracking solver
config.qt_steady= false -- Do unsteady quality tracking run

The variables config.refine, config.quality_tracking, and config.qt_steady are set to false by default,
so it is not necessary to include them if they are not used in the setup. The variable config.qt_steady is only
used in case config.quality_tracking = true.

We save the configuration in a file named, for example, config.lua. Shimmer++ is then run as

./shimmer_solver config.lua

3.5 Shimmer++ organization
The Shimmer++ code is mainly organised with sources stored in the shimmer/shimmer++/src folder and
unitary tests in the shimmer/shimmer++/unit_tests. There is an additionally GERG folder which accounts for
the interface of shimmer++ with the code regarding GERG-2008 equation computations.

The research leading to these results has received funding from Horizon Europe, the European Union’s
Framework Programme for Research and Innovation under grant agreement no 101111888. 13 of 56

D4.4 – Open-source fluid-dynamic model
with gas quality tracking Version: 1.1 Date: 09/12/2025

4 Model description
Natural Gas infrastructure, being a set of physically interconnected elements forming a network structure, can
be represented with a graph. In mathematical term, a graph is an ordered pair G = (V, E), where V is a set
of elements called vertices (or nodes) and E an ordered set of vertex pairs called directed edges (or directed
branch). Therefore, in a physical network representation, a directed edge represents any element of the network
connecting an inlet and an outlet node with a defined direction. With such a schematization, the fluid-dynamic
variables are associated to topological entities in this way:

• nodal: pressure (p), exchanged mass flow rate with external environment (ṁext, Gext or L), gas composi-
tion (molar fraction);

• branch: mass flow rate (ṁ or G).

To be able to consider the variety of elements in a real gas network, nodes and branches shall be categorized
in different types. The following two paragraphs are devoted to the description of the possible types of nodal
stations and of branch elements. Subsections 4.1 and 4.2 are meant to describe the main implemented stations,
items of the gas network which requires specifications such as set-points, operational limits etc. which acts like
boundary conditions (with their profile in time if they are changing in time) and the technical parameters (such
as diameters, length, heigh, etc.). When quality tracking and admixing is to be performed, among the boundary
conditions the specification of the nodal composition in the gas entry points acts as the boundary condition
for the quality tracking problem. The reader is then referred to the subsequent section (Sect. 5) where the
database structure for data input/output is described. In this way, the structure of each table would be easily
understood.

Subsection 4.3 briefly explains the fluid-dynamic solver part of the overall gas network model, which is
also addressed more in-depth in Sect. 6.3. Overall, the model is summarized in the flow chart of Fig. 2.
It is possible to note that, after the data acquisition and initialization phase, the time cycle starts. For each
timestep, the gas quality is defined and an iterative procedure is followed to solve the linearized fluid-problem.
Once a first solution is reached, the verification of the constraints posed on relevant nodal stations and branch
element is performed. If one of these items displays a violation of the constraints, then the station state (e.g.
control mode) is changed and the fluid-dynamic problem should be re-calculated from scratch, as some of the
boundary conditions have been changed. When an acceptable solution is reached, the fluid network has been
solved (i.e. all the nodal pressures, the pipeline mass flow rates and the nodal inward/outward mass flow
rates have been determined). This result allows to address the quality tracking and admixing box: along the
pipeline, the gas quality movement is tracked according to the velocities calculated from the step before, thus
a spatial discretization is desired. At mixing nodes (i.e. when two pipelines converge in one node), the gas
admixing is simulated, solving a mass balance equation for each chemical specie (the model can handle up to
21 chemical species, as the GERG-2008 equation of state is implemented). When the quality box calculation
have been terminated, the time counter is updated and a new time cycle is addressed, in which the gas quality
is updated according to the result of the step before and the old solution of pressure and mass flow rate is used
as representative of the previous time step.

The model have been consturcted such that it is possible to choose whether to perform an unsteady
(transient) simulation or a seady-state one, with or without quality tracking. In case of steady state with quality
tracking, only the "admixing" procedure is possible: the result will then be representative of an equilibrium
state, even from the point of view of the gas quality distribution.

The research leading to these results has received funding from Horizon Europe, the European Union’s
Framework Programme for Research and Innovation under grant agreement no 101111888. 14 of 56

D4.4 – Open-source fluid-dynamic model
with gas quality tracking Version: 1.1 Date: 09/12/2025

Figure 2: Overall gas network model flow chart.

4.1 Nodal station types
The nodes are generally the interfaces between the gas network and the outer world. For this reason, these
are the elements on which to assign the boundary conditions. The quantities which can be assigned are,
alternatively, the nodal pressure pn or the nodal mass flow rate Ln exchanged with the external environment.
The convention of the sign for the nodal mass flow rate Ln is as follows

• exiting nodal mass flow rate (consumption) → Ln > 0

• entering nodal mass flow rate (injection) → Ln < 0.

Each node station is topologically and unambiguously defined by a node number n. Additionally, local-
ization information can also be added such as: latitude and longitude coordinates and the altitude. While the
first two information does not enter into the fluid-dynamic model (they might be useful for postprocessing of
results) the altitude is in fact used to take into account the gravitational effect on the pressure drop calculation
within the pipelines.

Given that, in general, the simulation is of an unsteady state, the boundary conditions may change over time
either in value and in the controlled variable itself, defining the "state" of the nodal station. In the following,
a list of the available nodal station, their control states and the related boundary conditions are given. All the
limits that, if surpassed, cause a switch in the control mode (thus a switch in state) are referred to as "Hard
Limits". "Soft Limits" are instead intended to be the normal or desired working conditions. When they are
surpassed, a warning message is given, but no further actions are automatically taken from the model.

4.1.1 Pressure regulated entry station without backflow

Pressure regulated entry points can be associated with city-gate gas entry points or with llower-levelgas
reduction stations as well as the gas entry point of a transmission system. In all these cases, these items are
devoted to maintaining a fixed pressure setpoint at the relevant node. When dealing with the modelling of
old types of reduction stations, the pressure set-point is fixed and constant throughout the whole simulation
period. If a modulating-pressure reduction station is to be modelled, then the pressure boundary condition
will be a time series of predefined pressure set-points. When providing a pressure set point to a node of the

The research leading to these results has received funding from Horizon Europe, the European Union’s
Framework Programme for Research and Innovation under grant agreement no 101111888. 15 of 56

D4.4 – Open-source fluid-dynamic model
with gas quality tracking Version: 1.1 Date: 09/12/2025

network, the gas flow rate will be calculated as a consequence of the fluid-dynamic of the network in order to
respect the constraint set by the boundary condition.

This pressure regulated station is also referred to as ReMi station w/o backflow (ReMi is the Italian acronym
for the Regulation and Metering stations, usually at the distribution network entry gates). They are usually
controlled in pressure, but their architecture is such that in case of any overpressure in the downstream portion
of the network (meaning that the pressure on the distribution system side is higher than the pressure set-point),
the gas flux is stopped.

This pressure regulated station has as internal hard limit the following condition

Ln(t) ≤ 0. (1)

If it is not respected, then the control mode switches from pressure based to gas flow based and becomes

Ln(t) = 0, (2)

so to forbid any reverse gas flow. Through these set of boundary condition a typical Re-Mi gas station or second
level gas reduction station is modelled: these items in fact are meant to reduce pressure from higher pressure
level to distribution range ones, by setting an outlet pressure set point. Nevertheless, this kind of station can
also be used for transmission system applications, whenever a pressure regulated control entry point is needed.
In Fig. 4, the graphical flowchart is given to explain the switch of states.

Figure 3: Pressure regulated entry station w/o backflow - flowchart representation.

4.1.2 Mass Flow regulated entry station with pressure control

Flow rate regulated entry points can be associated with gas entry points of the network where a known flux must
be delivered: these are, for example, gas production fields, biomethane plants and, in perspective, hydrogen
production and injection points (for blending purposes). When providing a flow rate set point to a node of the
network, the nodal pressure will be calculated as a consequence of the fluid-dynamic of the network calculated
in order to respect the constraint set by the boundary condition.

This mass flow regulated station has as internal hard limit the following condition:

pn(t) ≤ pthreshold(t) = f · psetpoint(t),

The research leading to these results has received funding from Horizon Europe, the European Union’s
Framework Programme for Research and Innovation under grant agreement no 101111888. 16 of 56

D4.4 – Open-source fluid-dynamic model
with gas quality tracking Version: 1.1 Date: 09/12/2025

with the parameter f ∈ [0, 1] representing a relative threshold factor with respect to the setpoint value. It
defines the maximum admissible fraction of the setpoint that the variable pn(t) can reach. When pn(t) exceeds
f · psetpoint(t), the control mode switches from gas flow based to pressure control and becomes:

pn(t) ≤ psetpoint(t).

Given a certain gas flow rate forced to enter the gas network, if the reached pressure in the injection point is
higher than a certain pressure threshold, it might not be possible for the station or acceptable for the network
to receive and then, a pressure set point should be put in force to calculate the allowable entering gas flux. This
simulates cases of curtailments of renewable gases from the gas network.

In Fig. 4, the graphical flowchart is given to explain the switch of states.

Figure 4: Mass regulated entry station w pressure control - flowchart representation.

4.1.3 Junctions

These are nodes that does not interacts with the external environment: they do not exchange any mass flow.
From a boundary condition point of view:

Ln(t) = 0 for any time t

Consequently, the nodal pressure pn(t) is computed for any timestep. It is to be highlighted that, in the
Shimmer++ architecture, once a node is defined as "junction", this boundary conditions are automatically set.

4.1.4 Exit Stations (consumption points)

These nodes are the ones in which a consumption of gas is given. They can be seen as flow rate regulated
stations without any control on the resulting pressure. The user should here specify, for each timestep, the set
value of consumption, providing the model with the gas consumption profile, with Ln(t) ≥ 0.

The research leading to these results has received funding from Horizon Europe, the European Union’s
Framework Programme for Research and Innovation under grant agreement no 101111888. 17 of 56

D4.4 – Open-source fluid-dynamic model
with gas quality tracking Version: 1.1 Date: 09/12/2025

4.2 Branch element types
The branches are generally the connections between two nodes (either stations or junctions). Most of the time,
they correspond to pipelines as physical entities. However, in the gas network infrastructure, at least two other
physical entities can be modeled as branches: compression stations and pressure reduction stations. Basically,
the first one is used to increase the pressure, and the second one is used to reduce the pressure. Each branch-like
element is topologically defined by

• inlet node → n that should be consistent with the overall node numbering

• outlet node → n that should be consistent with the overall node numbering

4.2.1 Compression Station

In this modeling framework, the compression station is considered as a black box that contains the combination
of all the installed compressors and the gas coolers. In this way, the outlet gas temperature can be assumed the
same as the one assumed throughout the system. The general form of the gas compressor equation referred to
the mechanical shaft power (Pshaft) required by the compressor to the gas turbine driver, results in:

Pshaft =
1

ηis ηmecc

γ

γ − 1
Zin Tin Rin

(
β

γ−1
γ − 1

)
ṁj

with ηis the isentropic efficiency of compression, ηmecc the mechanical efficiency of the compressor (set equal
to 80%), γ the adiabatic exponent, and β the compression ratio which is the ratio between outlet and inlet
pressure. Z, T , R are respectively the gas compressibility factor, the temperature and the specific gas constant.

Similar to the nodal stations, the compression station needs the specification of a boundary condition that
depends on its control mode. The compression station possible control modes are listed in Tab. 1

Controlled variable Set point Equation
Driver Power Pshaft setpoint Pshaft setpoint =

1
ηis ηmecc

γ
γ−1Zin Tin Rin

(
β

γ−1
γ − 1

)
ṁj

Outlet pressure poutlet setpoint po = po,setpoint
Inlet pressure pinlet setpoint pi = pi,setpoint
Pressure Ratio βsetpoint

po

pi
= βsetpoint

Mass flow ṁsetpoint ṁj = ṁset

Table 1: Control modes for compressors.

The choice of one of this control mode changes the equation that simulate the compression station branch.
Similar to the nodal stations, also for the compression stations some operative ranges of pressure, mass flow,
pressure ratio and driver power should be specified as limits and, if violated, they may lead to changes in the
control mode.

Furthermore, the gas compression station can also assume two different states: ON and OFF: when the
compressor is ON, one of the above-mentioned control mode needs to be specified; when the compressor is
OFF, two sub-states are possible (and should be specified):

• BYPASS → ṁin = ṁout; The compressor leaves free-flow thus the inlet and outlet mass (as well as the
pressures) are set as equal.

• CLOSED → ṁj,compr = 0 The compressor acts like a closed valve. It interrupts the gas flow. This is
relevant when the downstream section of the grid is at higher pressure than the upstream (so to avoid
counterflows).

The research leading to these results has received funding from Horizon Europe, the European Union’s
Framework Programme for Research and Innovation under grant agreement no 101111888. 18 of 56

D4.4 – Open-source fluid-dynamic model
with gas quality tracking Version: 1.1 Date: 09/12/2025

4.2.2 Pipelines

The pipelines are the most common branch-like items. They are fully passive elements with no boundary
conditions requirements. Hence, each single pipe is defined by their technical parameters features, listed
hereafter

• Internal Diameter → Di

• Length → l

• Internal Roughness → εi

In this modelling framework, in principle, the user can define pipelines with any lengths, which can differ a lot
one-another. In case the user wants or need to have more uniform spatial discretization, it is possible to define
the number of segments (#segs), for each node. The model will the subdivide the pipeline in the assigned
number of segments, dividing uniformly the pipe length by creating a number of so-called "fictitius" nodes,
treated as junctions.

The pipeline equation employed in this model is the Ferguson Equation, written as follows

Pin − Poute
sj =

2 p̄j lej
Aj

∂ṁj

∂t
+

λj c̄
2
j lej

DjA2
j

ṁj |ṁj |,

with

lej =


lj , hin = hout

esj − 1

sj
lj , hin ̸= hout

with sj =
2g(hout − hin)

c̄2j
,

where P = p2 is the quadratic pressure (p in [Pa]), ṁj is the gas mass flow rate [kg/s], λ is the friction factor [−],
c̄2 is the isothermal speed of sound of the gas [m/s], Dj is the pipeline inner diameter [m], Aj is the pipeline
cross section area [m2], lj is the pipeline (or pipeline section) length [m], g is the gravitational acceleration
[m/s2] and the subscripts in and out stand for the inlet and the outlet sections of the generic jth pipe. In
order to account for the gravitational contribution, the “effective length” le is defined as the corrected length
of the pipeline section in case of non-horizontal pipelines (whose slope is defined by the elevation difference
(hout−hin) of their ends). The averaged quantities, which make the analytical solution possible, are calculated
starting from the computed value of the average pressure p̄ as

p̄ =
p2in + pinpout + p2out

pin + pout
,

and in turn, the speed of sound is computed using the gas relation

c̄2 = Z(p̄, T, [y])RT

where Z(p̄, T, [y]) is obtained from the application of the chosen gas Equation of State (EoS). In this modelling
framework the GERG-2008 EoS has been implemented [1]. Also the friction factor λ can be calculated by means
of an appropriate friction factor correlation. In this framework, the Cheng correlation is used [2].

For an in-depth knowledge of the linearization and space-time discretization of the Ferguson formula the
reader is invited to refer to [3] [4].

4.3 Overall Network Model Rationale
Solving a fluid networks means to solve a pressure-velocity coupled problem on a graph-modeled infrastructure.
In this case, the velocity variable has been replaced by the pipeline mass gas flow rates ṁj . For solving the
gas network, two sets of equations are needed: a set of equations for all the branches and a set of equations
for all the nodes. In this framework, the branch equations are the set of quadratic pressure drop equation

The research leading to these results has received funding from Horizon Europe, the European Union’s
Framework Programme for Research and Innovation under grant agreement no 101111888. 19 of 56

D4.4 – Open-source fluid-dynamic model
with gas quality tracking Version: 1.1 Date: 09/12/2025

which can be written for all the pipes (Fergusson Equation) and the nodal equations are the set of mass balance
(mass conservation law) which can be applied to each nodes. Whenever a non-pipeline station is defined,
the pressure drop equation is substituted with the relevant equation describing the element (and its control
mode). Besides these, all the relevant boundary conditions are needed, as discribed in the previous sections. By
linearizing the pressure drop equation it is possible to assemble an algebraic problem for the full gas network
infrastructure, provided that the topological structure of the network (i.e. all the node-branch connections) is
properly arranged in an incidence matrix. To have more in-depth insight of this subject the reader is referred
to [4]. In 8 a schematic representation of the mathematical procedure is displayed.

4.4 Nomenclature and unit of measurments
In this section, a summary table showing the units of measurement for each variable is given below:

Input/output variable Symbol Unit of
measurement

N
od

al
va

ri
ab

le
s Pressure p Pa

Injected/consumed gas ṁext or Gext or L kg/s
Injected negative value

Consumed positive value
Gas composition Frac_XX Molar fraction [0–1]

Br
an

ch
va

ri
ab

le
s

Mass flow ṁ or G kg/s
Same direction of the

branch Positive value

Opposite direction of the
branch Negative value

Velocity v m/s
Same direction of the

branch Positive value

Opposite direction of the
branch Negative value

Diameter D m
Length l m
Roughness ε m
Compressor power Pcmpr W

Table 2: Nodal and branch variables with their symbols and units of measurement.

The research leading to these results has received funding from Horizon Europe, the European Union’s
Framework Programme for Research and Innovation under grant agreement no 101111888. 20 of 56

D4.4 – Open-source fluid-dynamic model
with gas quality tracking Version: 1.1 Date: 09/12/2025

5 Network Data Files
The Shimmer++ input/output is done entirely via network data files (NDFs). The user prepares NDFs speci-
fying the whole network and the code processes them and stores simulation solutions in them. The NDFs of
Shimmer++ are based on SQLite, which is the most widely deployed relational database system. This choice
guarantees total compatibility with any programming language/environment and easy manipulation of the
network data via standard SQL queries. On top of the raw SQLite database, Shimmer++ provides a C++ API
and a Matlab API specific for the manipulation of the NDFs.

5.1 Database schema: nodal elements (stations)
In the following the NDF database schema will be described. The knowledge of the database schema is needed
to directly modify the NDFs via tools like SQLite Browser (https://sqlitebrowser.org/) or to implement
third party tools able to read and write Shimmer++ NDFs.

5.1.1 Station types

Shimmer++ handles gas networks with different types of stations, as described in Section 4.1. Each station type is
assigned a specific numeric identifier in order to be appropriately handled by the code. Currently implemented
station types are visible in network_elements.hpp and summarized in the following code snippet:

enum class station_type : int {
ENTRY_P_REG = 1, /* ReMi w/o backflow */
ENTRY_L_REG = 2, /* Injection w/ pressure control */
EXIT_L_REG = 3, /* Consumption point w/o pressure control */
JUNCTION = 4, /* Junction */
PRIVATE_INLET = 10, /* Inlet, internal use only */
PRIVATE_OUTLET = 11, /* Outlet, internal use only */
FICTITIOUS_JUNCTION = 100 /* For quality tracking, should not appear in DB*/

};

On the NDF side, the table containing the station types is named station_types and is specified by the
following SQL statement:

create table station_types (
t_type INTEGER, -- Station type, as per enum above
t_descr TEXT NOT NULL, -- Free-form description of the type
t_limits_table TEXT, -- Table with type-specific operational limits
t_profile_table TEXT, -- Table with type-specific operational profiles

PRIMARY KEY(t_type)
);

This table comes pre-populated to reflect the numeric ids cited above and it should not be modified by the
user.

t_type t_descr t_limits_table t_profile_table
1 ReMi station w/o backflow limits_remi_wo profiles_remi_wo
2 Injection station w/ pressure control limits_injection_w profiles_injection_w
3 Consumption point w/o pressure control limits_conspoint_wo profiles_conspoint_wo
4 Junction NULL NULL
10 Inlet station - private NULL NULL
11 Outlet station - private limits_outlet_priv profiles_outlet_priv

Table 3: List of possible nodal station types.

The research leading to these results has received funding from Horizon Europe, the European Union’s
Framework Programme for Research and Innovation under grant agreement no 101111888. 21 of 56

https://sqlitebrowser.org/

D4.4 – Open-source fluid-dynamic model
with gas quality tracking Version: 1.1 Date: 09/12/2025

The columns t_limits_table and t_profile_table contain the table names for the settings of a specific
station type. Should the code be modified to support new station types, this table must be updated accordingly.

5.1.2 Stations List

The table stations contains the list of all the stations present in a network. A station is uniquely identified by
the field s_number and has the following attributes:

• s_name: the name of the station

• t_type: the type of the station, according to the table station_types

• s_height: altitude of the station

• s_latitude: latitude of the station

• s_longitude: longitude of the station

The table is fully specified by the following SQL code:

create table stations (
s_number INTEGER,
s_name TEXT NOT NULL,
t_type INTEGER,

s_height REAL DEFAULT 0.0 NOT NULL,
s_latitude REAL DEFAULT 0.0 NOT NULL,
s_longitude REAL DEFAULT 0.0 NOT NULL,

PRIMARY KEY(s_number),

-- The type of the station must be well-defined
FOREIGN KEY (t_type)

REFERENCES station_types(t_type),

CHECK(s_number >= 0)
);

5.1.3 Limits and profiles: Pressure regulated entry station w/o backflow (ReMi station)

Each station of type "ReMi" has an associated set of user-specified limits on pressure and mass flow rate. Limits
are specified per station by NDF entries including:

• s_number: number of the station

• lim_Lmin: minimum allowed mass flow rate (soft limit)

• lim_Lmax: maximum allowed mass flow rate (soft limit)

• lim_Pmin: minimum allowed pressure (soft limit)

• lim_Pmax: maximum allowed pressure (soft limit)

As described in Section 4.1, the hard limit regarding the avoidance of the reverse gas flow is built-in the station
control mode and the user is not requested to specify it. The table of the limits for ReMi stations is fully specified
by the following SQL code:

The research leading to these results has received funding from Horizon Europe, the European Union’s
Framework Programme for Research and Innovation under grant agreement no 101111888. 22 of 56

D4.4 – Open-source fluid-dynamic model
with gas quality tracking Version: 1.1 Date: 09/12/2025

create table limits_remi_wo (
s_number INTEGER UNIQUE,
lim_Lmin REAL DEFAULT 0.0 NOT NULL,
lim_Lmax REAL DEFAULT 0.0 NOT NULL,
lim_Pmin REAL DEFAULT 0.0 NOT NULL,
lim_Pmax REAL DEFAULT 0.0 NOT NULL,

FOREIGN KEY (s_number)
REFERENCES stations(s_number)

);

In addition to limits, the NDFs allow to store also profiles for the quantity controlled by the station (the pressure,
in this case). A pressure profile is specified by triples including:

• s_number: number of the station

• prf_time: relative time of the sample (seconds)

• prf_Pset: pressure setpoint at the specified time

If a profile for a station includes a single entry, the quantity is held constant at the specified value for the whole
simulation. The table of the profiles for ReMi stations is fully specified by the following SQL code:

create table profiles_remi_wo (
s_number INTEGER,
prf_time REAL DEFAULT 0.0 NOT NULL,
prf_Pset REAL DEFAULT 0.0 NOT NULL,

FOREIGN KEY (s_number)
REFERENCES stations(s_number)

);

5.1.4 Limits and profiles: Mass flow regulated entry station w/ pressure control (Injection station)

Each station of type "Injection" has an associated set of user-specified limits on pressure and mass flow rate.
Limits are specified per station by NDF entries including:

• s_number: number of the station

• lim_Lmin: minimum allowed mass flow rate (soft limit)

• lim_Lmax: maximum allowed mass flow rate (soft limit)

• lim_Pmin: minimum allowed pressure (soft limit)

• lim_Pmax: maximum allowed pressure (soft limit)

• parm_f: relative threshold factor with respect to the pressure setpoint value (f ∈ [0, 1]) - see Section 4.1.

The table of the limits for Injection stations is fully specified by the following SQL code:

create table limits_injection_w (
s_number INTEGER UNIQUE,
lim_Lmin REAL DEFAULT 0.0 NOT NULL,
lim_Lmax REAL DEFAULT 0.0 NOT NULL,
lim_Pmin REAL DEFAULT 0.0 NOT NULL,
lim_Pmax REAL DEFAULT 0.0 NOT NULL,
parm_f REAL DEFAULT 1.0 NOT NULL,

The research leading to these results has received funding from Horizon Europe, the European Union’s
Framework Programme for Research and Innovation under grant agreement no 101111888. 23 of 56

D4.4 – Open-source fluid-dynamic model
with gas quality tracking Version: 1.1 Date: 09/12/2025

FOREIGN KEY (s_number)
REFERENCES stations(s_number)

);

In addition to limits, the NDFs allow to store also profiles for the quantity controlled by the station. A profile
for Injection stations is specified by quadruples including:

• s_number: number of the station

• prf_time: relative time of the sample (seconds)

• prf_Pset: pressure setpoint at the specified time (hard limit and secondary set-point in case of change of
control mode)

• prf_Lset: mass flow rate setpoint at the specified time - the primary set-point of the station: injected
mass flow rate.

If a profile for a station includes a single entry, the quantity is held constant at the specified value for the whole
simulation. The table of the profiles for Injection stations is fully specified by the following SQL code:

create table profiles_injection_w (
s_number INTEGER,
prf_time REAL DEFAULT 0.0 NOT NULL,
prf_Pset REAL DEFAULT 0.0 NOT NULL,
prf_Lset REAL DEFAULT 0.0 NOT NULL,

FOREIGN KEY (s_number)
REFERENCES stations(s_number)

);

5.1.5 Limits and profiles: Consumption station

Each station of type Consumption has an associated set of user-specified limits on pressure and mass flow rate.
Limits are specified per station by NDF entries including:

• s_number: number of the station

• lim_Lmin: minimum allowed mass flow rate

• lim_Lmax: maximum allowed mass flow rate

• lim_Pmin: minimum allowed pressure

• lim_Pmax: maximum allowed pressure

The table of the limits for Consumption stations is fully specified by the following SQL code:

create table limits_conspoint_wo (
s_number INTEGER UNIQUE,
lim_Lmin REAL DEFAULT 0.0 NOT NULL,
lim_Lmax REAL DEFAULT 0.0 NOT NULL,
lim_Pmin REAL DEFAULT 0.0 NOT NULL,
lim_Pmax REAL DEFAULT 0.0 NOT NULL,

FOREIGN KEY (s_number)
REFERENCES stations(s_number)

);

The research leading to these results has received funding from Horizon Europe, the European Union’s
Framework Programme for Research and Innovation under grant agreement no 101111888. 24 of 56

D4.4 – Open-source fluid-dynamic model
with gas quality tracking Version: 1.1 Date: 09/12/2025

In addition to limits, the NDFs allow to store also profiles for the quantity controlled by the station. A mass
flow rate profile is specified by triples including:

• s_number: number of the station

• prf_time: relative time of the sample (seconds)

• prf_Lset: mass flow rate setpoint at the specified time

If a profile for a station includes a single entry, the quantity is held constant at the specified value for the whole
simulation. The table of the profiles for Consumption stations is fully specified by the following SQL code:

create table profiles_conspoint_wo (
s_number INTEGER,
prf_time REAL DEFAULT 0.0 NOT NULL,
prf_Lset REAL DEFAULT 0.0 NOT NULL,

CHECK(prf_Lset >= 0),

FOREIGN KEY (s_number)
REFERENCES stations(s_number)

);

5.1.6 Gases

The gases table lists the gases supported by the Equation of state described in Section 6.3.3. They can be
employed in simulations, either as pure substances or as components of mixtures. Each gas is identified by
thefollowing attributes

• g_num: number id of the gas

• g_formula: as the name indicates, it corresponds to the gas formula (in capital letters)

• g_name: the name of the corresponding gas

The table is fully specified by the following SQL code

create table gases (
g_num INTEGER PRIMARY KEY,
g_formula TEXT NOT NULL,
g_name TEXT NOT NULL

);

This table comes pre-populated to reflect the numeric IDs listed below and should not be modified by the
user.

The research leading to these results has received funding from Horizon Europe, the European Union’s
Framework Programme for Research and Innovation under grant agreement no 101111888. 25 of 56

D4.4 – Open-source fluid-dynamic model
with gas quality tracking Version: 1.1 Date: 09/12/2025

g_num g_formula g_name
0 CH4 Methane
1 N2 Nitrogen
2 CO2 Carbon dioxide
3 C2H6 Ethane
4 C3H8 Propane
5 i_C4H10 i-butane
6 n_C4H10 n-butane
7 i_C5H12 i-pentane
8 n_C5H12 n-pentane
9 C6H14 Hexane
10 C7H16 Heptane
11 C8H18 Octane
12 C9H20 Nonane
13 C10H22 Decane
14 H2 Hydrogen
15 O2 Oxygen
16 CO Carbon oxide
17 H2O Water
18 H2S Hydrogen sulfide
19 He Helium
20 Ar Argon

Table 4: List of gases with their formula and corresponding names.

5.1.7 Gas molar fractions

The table gas_molar_fraction contains the molar fraction of each gas species at a given station (node) in
the network. Each record identifies a specific gas component within a node and is uniquely identified by the
combination of s_number and frac_<gas_name>, denoting the following attributes:

• s_number: identifier of the station (node)

• frac_<gas_name>: molar fraction of each gas species (between 0 and 1), where <gas_name> refers to the
abbreviations listed in the gases table (e.g., frac_CH4, frac_CO2, frac_H2, etc.) shown in the previous
section.

The specification of the molar composition for a gas entry node (pressure regulated node or injection node)
allows for the simulation of a multi-gas scenario where different gas sources can have different gas composition.
Thus, a quality-tracking based simulation can be consequently performed. In other words, it is here that the
user should define the composition of the injected gas which is to be tracked.

This setting is used for both the table gas_molar_fraction and solution_gas_molarfrac: the first stores
the initial gas composition, while the latter stores the updated concentrations throughout the simulation. As
for other variables output, in the solution_gas_molarfrac, there will be an additional column regarding the
timestep.

create table gas_molar_fraction (
s_number INTEGER NOT NULL,

frac_CH4 REAL DEFAULT 0.0 NOT NULL,
frac_N2 REAL DEFAULT 0.0 NOT NULL,
frac_CO2 REAL DEFAULT 0.0 NOT NULL,
frac_C2H6 REAL DEFAULT 0.0 NOT NULL,
frac_C3H8 REAL DEFAULT 0.0 NOT NULL,

The research leading to these results has received funding from Horizon Europe, the European Union’s
Framework Programme for Research and Innovation under grant agreement no 101111888. 26 of 56

D4.4 – Open-source fluid-dynamic model
with gas quality tracking Version: 1.1 Date: 09/12/2025

frac_i_C4H10 REAL DEFAULT 0.0 NOT NULL,
frac_n_C4H10 REAL DEFAULT 0.0 NOT NULL,
frac_i_C5H12 REAL DEFAULT 0.0 NOT NULL,
frac_n_C5H12 REAL DEFAULT 0.0 NOT NULL,
frac_C6H14 REAL DEFAULT 0.0 NOT NULL,
frac_C7H16 REAL DEFAULT 0.0 NOT NULL,
frac_C8H18 REAL DEFAULT 0.0 NOT NULL,
frac_C9H20 REAL DEFAULT 0.0 NOT NULL,
frac_C10H22 REAL DEFAULT 0.0 NOT NULL,
frac_H2 REAL DEFAULT 0.0 NOT NULL,
frac_O2 REAL DEFAULT 0.0 NOT NULL,
frac_CO REAL DEFAULT 0.0 NOT NULL,
frac_H2O REAL DEFAULT 0.0 NOT NULL,
frac_H2S REAL DEFAULT 0.0 NOT NULL,
frac_He REAL DEFAULT 0.0 NOT NULL,
frac_Ar REAL DEFAULT 0.0 NOT NULL,

PRIMARY KEY (s_number),

-- Each row must correspond to an existing station
FOREIGN KEY (s_number)

REFERENCES stations(s_number),

CHECK (
frac_CH4 BETWEEN 0.0 AND 1.0 AND
frac_N2 BETWEEN 0.0 AND 1.0 AND
frac_CO2 BETWEEN 0.0 AND 1.0 AND
frac_C2H6 BETWEEN 0.0 AND 1.0 AND
frac_C3H8 BETWEEN 0.0 AND 1.0 AND
frac_H2 BETWEEN 0.0 AND 1.0
-- ... (additional checks can be added for all gases)

)
);

The sum of all molar_fraction values associated with the same s_numbermust be equal to 1.

The research leading to these results has received funding from Horizon Europe, the European Union’s
Framework Programme for Research and Innovation under grant agreement no 101111888. 27 of 56

D4.4 – Open-source fluid-dynamic model
with gas quality tracking Version: 1.1 Date: 09/12/2025

5.2 Database schema: branch elements (pipelines and non-pipe elements)
5.2.1 Branch element types

All the network elements with an inlet and an outled are termed “pipeline elements” inside Shimmer++ (indeed
they are branch elements comprising pipeline and non-pipeline elements). As for the stations, Shimmer++
handles different network elements, each uniquely identified by an integer. Pipeline types are contained in a
table fully specified by the following SQL code:

create table pipeline_types (
p_type INTEGER,
t_name TEXT NOT NULL,
PRIMARY KEY (p_type)

);

As for the stations, the above SQL table is pre-populated with the four types of stations supported by
Shimmer++, summarized in Table 5.

p_type t_name
0 Plain pipe
1 Compressor
2 Reduction station
3 Valve

Table 5: Pipe-like elements supported by Shimmer++

Each pipeline-like element is uniquely identified by a triple including the pipe name p_name, the originating
station s_from and the destination station s_to. In addition, the type of the pipeline element is stored in the
p_type attribute.

create table pipelines (
p_name TEXT NOT NULL,
s_from INTEGER NOT NULL,
s_to INTEGER NOT NULL,
p_type INTEGER NOT NULL,
PRIMARY KEY (p_name, s_from, s_to),

-- The source station must exist
FOREIGN KEY (s_from)

REFERENCES stations(s_number),
-- The destination station must exist
FOREIGN KEY (s_to)

REFERENCES stations(s_number),
-- The pipeline type must be valid
FOREIGN KEY (p_type)

REFERENCES pipeline_types(p_type)
);

5.2.2 Plain pipes

Plain pipes are uniquely identified by a triple including the pipe name p_name, the originating station s_from
and the destination station s_to. Additional attributes of a pipe are its diameter, its length, its roughness and
the number of segments in which it will be split if mesh refinement is used for quality tracking. The table
where the pipes and related parameters are stored is fully specified by the following SQL code:

The research leading to these results has received funding from Horizon Europe, the European Union’s
Framework Programme for Research and Innovation under grant agreement no 101111888. 28 of 56

D4.4 – Open-source fluid-dynamic model
with gas quality tracking Version: 1.1 Date: 09/12/2025

create table pipe_parameters (
p_name TEXT NOT NULL,
s_from INTEGER,
s_to INTEGER,
diameter REAL DEFAULT 0.0,
length REAL DEFAULT 0.0,
roughness REAL DEFAULT 0.0,
ref_nsegs INTEGER DEFAULT 0,

-- The referenced pipeline must exist
FOREIGN KEY (p_name, s_from, s_to)

REFERENCES pipelines(p_name, s_from, s_to),

CHECK(ref_nsegs >= 0)
);

The ref_nsegs variable here specifies the refinement parameter when quality tracking is employed. If the
value is zero, the pipe is refined according the config.dx parameter, in particular the segments will be at most
config.dx long. Otherwise, it specifies the exact number of segments in which the pipe has to be refined.

5.2.3 Compressor stations

Compressors are uniquely identified by a triple including the pipe name p_name, the originating station s_from
and the destination station s_to. Each compressor has an associated set of limits and an associated temporal
profile. The physical/engineering meaning of these parameters are described in 4.2.

The table containing the compressor limits is fully specified by the following SQL code:

create table compressor_limits (
p_name TEXT NOT NULL,
s_from INTEGER,
s_to INTEGER,

max_power REAL DEFAULT 0.0,
max_outpress REAL DEFAULT 0.0,
min_inpress REAL DEFAULT 0.0,
max_ratio REAL DEFAULT 0.0,
min_ratio REAL DEFAULT 0.0,
max_massflow REAL DEFAULT 0.0,

PRIMARY KEY (p_name, s_from, s_to),

-- The referenced pipeline must exist
FOREIGN KEY (p_name, s_from, s_to)

REFERENCES pipelines(p_name, s_from, s_to)
);

where the control mode is an integer defined following Table 6.

The research leading to these results has received funding from Horizon Europe, the European Union’s
Framework Programme for Research and Innovation under grant agreement no 101111888. 29 of 56

D4.4 – Open-source fluid-dynamic model
with gas quality tracking Version: 1.1 Date: 09/12/2025

Name controlmode Active Description
ON_POWER 0 On Control mode power driver
ON_OPRESS 1 On Control mode outlet pressure
ON_IPRESS 2 On Control mode inlet pressure
ON_RATIO 3 On Control mode compression ratio
ON_MASSFLOW 4 On Control mode mass flow
OFF_BYPASS 10 Off Bypass
OFF_CLOSED 11 Off Closed

Table 6: Control modes supported by Shimmer++ for the compressor station.

Each compressor also has an associated CONSTANT temporal profile.

create table compressor_profile (
p_name TEXT NOT NULL,
s_from INTEGER,
s_to INTEGER,

prf_time REAL DEFAULT 0.0,
controlmode INTEGER DEFAULT 10, -- default OFF BYPASS
power REAL DEFAULT 0.0,
outpress REAL DEFAULT 0.0,
inpress REAL DEFAULT 0.0,
ratio REAL DEFAULT 0.0,
massflow REAL DEFAULT 0.0,

-- The referenced pipeline must exist
FOREIGN KEY (p_name, s_from, s_to)

REFERENCES pipelines(p_name, s_from, s_to)
);

5.3 Database schema: network initial conditions
To start a simulation the user must provide the initial guessed conditions of the network, especially for the
nodes and pipes in which no boundary conditions are given. Thus, the conditions at each node (guessed
pressures) and in each pipe (guessed mass flow) are required.

5.3.1 Initial conditions for nodes

The initial conditions for the stations are specified in the table station_initial_conditions as specified by
the following SQL code:

create table station_initial_conditions (
s_number INTEGER UNIQUE NOT NULL,
init_P REAL DEFAULT 0.0 NOT NULL,
init_L REAL DEFAULT 0.0 NOT NULL,

FOREIGN KEY (s_number)
REFERENCES stations(s_number)

);

For each station, an entry composed of the station number, the station pressure, and the station mass flow
exchanged with the external environment must be provided.

The research leading to these results has received funding from Horizon Europe, the European Union’s
Framework Programme for Research and Innovation under grant agreement no 101111888. 30 of 56

D4.4 – Open-source fluid-dynamic model
with gas quality tracking Version: 1.1 Date: 09/12/2025

5.3.2 Initial conditions for branches

Similarly to stations, branches initial conditions must also be provided as entries in thepipe_initial_conditions
table. Each entry has to include the station name, the start and end node and the initial value of guessed mass
flow G, as specified by the following SQL code.

create table pipe_initial_conditions (
p_name TEXT NOT NULL,
s_from INTEGER,
s_to INTEGER,
init_G REAL DEFAULT 0.0 NOT NULL,

PRIMARY KEY (p_name, s_from, s_to),

FOREIGN KEY (p_name, s_from, s_to)
REFERENCES pipelines(p_name, s_from, s_to)

);

5.4 Database schema: simulation outputs
The solution of the model implemented by Shimmer++ is stored in five separate tables of the Network Data
Files.

Remark. If the pipe refinement option is enabled, Shimmer++ automatically generates a new Network Database
(NDB) within the build directory. The file will be named refined_<database_name>.db, and it will contain also the
updated information on stations and pipes corresponding to the additional units created during the refinement process.

The table solution_station_pressures stores for each row the pressure at a given time and a given station.

create table solution_station_pressures (
s_number INTEGER NOT NULL,
timestep INTEGER NOT NULL,
pressure REAL DEFAULT 0.0 NOT NULL,

FOREIGN KEY (s_number)
REFERENCES stations(s_number)

);

The table solution_pipe_flowrates stores for each row the flow rate in the pipe identified by p_name,
s_from, s_to at a specific timestep.

create table solution_pipe_flowrates (
p_name TEXT NOT NULL,
s_from INTEGER NOT NULL,
s_to INTEGER NOT NULL,
timestep INTEGER NOT NULL,
flowrate REAL DEFAULT 0.0 NOT NULL,

FOREIGN KEY (p_name, s_from, s_to)
REFERENCES pipelines(p_name, s_from, s_to)

);

The table solution_station_flowrates stores for each row the flow rate in the node identified by s_number
at a specific timestep.

create table solution_station_flowrates (

The research leading to these results has received funding from Horizon Europe, the European Union’s
Framework Programme for Research and Innovation under grant agreement no 101111888. 31 of 56

D4.4 – Open-source fluid-dynamic model
with gas quality tracking Version: 1.1 Date: 09/12/2025

s_number INTEGER NOT NULL,
timestep INTEGER NOT NULL,
pressure REAL DEFAULT 0.0 NOT NULL,

FOREIGN KEY (s_number)
REFERENCES stations(s_number)

);

The table solution_pipe_velocities stores for each row the gas velocity in the pipe identified by p_name,
s_from, s_to at a specific timestep.

create table solution_pipe_velocities (
p_name TEXT NOT NULL,
s_from INTEGER NOT NULL,
s_to INTEGER NOT NULL,
timestep INTEGER NOT NULL,
velocity REAL DEFAULT 0.0 NOT NULL,

FOREIGN KEY (p_name, s_from, s_to)
REFERENCES pipelines(p_name, s_from, s_to)

);

Finally, the table solution_station_molarfrac stores for each row the molar fraction for each g_name
component of the gas mixture in the node identified by s_number at a specific timestep.

create table solution_station_molfrac (
s_number TEXT NOT NULL,
timestep INTEGER NOT NULL,
g_name INTEGER NOT NULL,
molarfrac REAL DEFAULT 0.0 NOT NULL,

FOREIGN KEY (s_number)
REFERENCES stations(s_number)

);

The research leading to these results has received funding from Horizon Europe, the European Union’s
Framework Programme for Research and Innovation under grant agreement no 101111888. 32 of 56

D4.4 – Open-source fluid-dynamic model
with gas quality tracking Version: 1.1 Date: 09/12/2025

5.5 Automatic NDF Creation: sample code in Matlab environment
After the NDF is created, see Section 5 for more details, it remains empty. The user is required to populate it
with the relevant data prior to executing the simulation. This section presents a simple MATLAB tool capable
of populating the NDF from a MATLAB graph network, as well as generating the network back from the NDF.

Remark. The reader should consider this file as templates for the construction of further codes based on other programming
languages for the database population procedure

1%% DB schema path
2db_schema = fullfile(pwd, "../../shimmer++/share/shimmer.sql");
3

4%% Load NDF Matlab
5graph_path = fullfile(pwd, "graph_example.mat");
6graph = load(graph_path);
7graph = graph.graph;
8

9%% Load NDF SQlite
10db_path = fullfile(pwd, "/graph_example.db");
11if exist(db_path, 'file') == 2
12 delete(db_path);
13end
14

15%% Fill NDF from graph Matlab to SQlite
16sql_create(db_path, db_schema);
17sql_populate_from_graph(db_path, graph);
18

19%% Fill NDF from SQlite to Matlab
20converted_graph = graph_populate_from_sql(db_path);

Listing 1: Example of NDF creation from Matlab code sqlite_populate_graph_example.m

Listing 1 shows the functions to be called for generating an NDF SQLite file from MATLAB code and
viceversa. The complete example is available in the matlab/sqlite directory of the shimmer++ Git repository.

Remark. MATLAB version R2024b or later is required to run all the codes.

In the example, we propose the creation of a NDF made by 5 stations and 5 pipes, see Figure 5.
The MATLAB function sql_create is used to create a new NDF file at the location specified by db_path,

based on the SQLite schema provided at db_schema. Once the NDF file has been created, it can be populated
using the function sql_populate_from_graph. This function fills the SQLite database using the MATLAB
structure graph, which consists of the following fields:

• Nodes: a structure containing NDF station information, such as station types (Types), boundary and initial
conditions (PRESSURES, G_EXE, Pset_bc and Lset_bc), and initial and boundary gas molar compositions
(YYc and YY_ext_in);

• Edges: a structure containing NDF pipe information, including pipe endpoints (EndNodes), pipe descrip-
tion (Length, Epsi, and Diameter) , and initial flow conditions (FLOWRATES).

An example of the MATLAB NDF structure is provided in the file graph_example.mat.
The inverse operation, that is converting the SQLite NDF database back into the corresponding MATLAB

structure, is performed using the MATLAB function graph_populate_from_sql. This function takes as input
the path to the SQLite database and generates the corresponding MATLAB structure, as shown in the last line
of Code 1.

The research leading to these results has received funding from Horizon Europe, the European Union’s
Framework Programme for Research and Innovation under grant agreement no 101111888. 33 of 56

D4.4 – Open-source fluid-dynamic model
with gas quality tracking Version: 1.1 Date: 09/12/2025

Figure 5: Graph example.

Remark. If the user is creating an NDF file in this way and attempting to read it through the desktop version of DB
Browser for SQLite, it is suggested to update/refresh the database structure after uploading of the .db file, as otherwise it
might not be possible to see the actual content of the file.

The research leading to these results has received funding from Horizon Europe, the European Union’s
Framework Programme for Research and Innovation under grant agreement no 101111888. 34 of 56

D4.4 – Open-source fluid-dynamic model
with gas quality tracking Version: 1.1 Date: 09/12/2025

6 Developer zone

6.1 In memory representation
Network modelling can be mathematically abstracted into a graph of stations (graph nodes) and pipes an
non-pipes network elements (graph edges, also called branches). The network graph is implemented using
Boost Graph Library, which provides a labeled graph implementation and related algorithms. The network
data in particular is stored into the graph labels. Shimmer++ represents the network as an undirected graph,
therefore pipes are inherently not directional, in contrast to physical variables as velocity or flux. Using the
facilities of the Boost Graph Library, the definition of the graph type is

using infrastructure_graph = adjacency_list< listS, vecS,
undirectedS, vertex_properties, edge_properties>;

which is found in shimmer++/src/infrastructure_graph.h. In turn, the graph labels have the following
types:

1 using namespace boost;
2

3 using infrastructure_graph = adjacency_list< listS, vecS,
4 undirectedS, vertex_properties, edge_properties>;
5 using sptr_pipe_t = std::shared_ptr<edge_station::station>;
6 using uptr_node_t = std::unique_ptr<station>;
7

8 struct vertex_properties
9 {

10 int u_snum;
11 int i_snum;
12 station_type type;
13 double height;
14 double latitude;
15 double longitude;
16 vector_t gas_mixture;
17 uptr_node_t node_station;
18

19 };
20

21 struct edge_properties
22 {
23 pipe_type type;
24 int branch_num;
25 double length;
26 double diameter;
27 double friction_factor;
28 sptr_pipe_t pipe_station;
29 std::string name;
30 int i_sfrom;
31 int i_sto;
32 };
33

34 enum class pipe_type = { pipe, resistor, compressor, regulator, valve};

Network graphs are typically populated using network data files provided by the user. We refer the reader
to Section 5 for the structure of these data files and Section 5.5. However, for the sake of completeness in

The research leading to these results has received funding from Horizon Europe, the European Union’s
Framework Programme for Research and Innovation under grant agreement no 101111888. 35 of 56

D4.4 – Open-source fluid-dynamic model
with gas quality tracking Version: 1.1 Date: 09/12/2025

presenting the numerical stage, it is also shown how to manually introduce pipes and nodes properties in the
graph. This approach can be found in the unitary tests (shimmer++/unit_tests) designated to assess different
modules of the code separately. We emphasize once again that using the network data file is the recommended
approach. Nevertheless, manual input could be useful from the developer’s perspective. Let’s take as example
the graph in Fig. 6 of a simplified gas network.

0

1

2 43

0

3 1

2 4

Figure 6: Graph representation of a simplified gas network.

6.1.1 Define the graph

In the main function add the definition of the graph. For the sake of clearness, let us proceed step by step and
introduce two functions aimed to add first the vertex, make_init_vertex and later on the pipes properties,
make_init_pipes.

1 int main()
2 {
3 infrastructure_graph igraph;
4 std::vector<vertex_descriptor> vds;
5 make_init_vertex(igraph, vds);
6 make_init_pipes(igraph, vds);
7

8 return 0;
9 }

6.1.2 Add nodes specification

Let us suppose that the data shown in Tab. 7 is attached to the network vertices. For this example, no
specification about mixture composition is taken into account. Nonetheless, this functionality is supported and
can be easily added.

Node properties Mixture composition

N
od

es

G[kg/s] p[Pa] H[m] CH4 N2 . . .
0 5000 -60 10.0 - - -
1 0 20 20.0 - - -
2 0 25 30.0 - - -
3 0 35 40.0 - - -
4 0 50 50.0 - - -

Table 7: Parameters concerning node specification.

The research leading to these results has received funding from Horizon Europe, the European Union’s
Framework Programme for Research and Innovation under grant agreement no 101111888. 36 of 56

D4.4 – Open-source fluid-dynamic model
with gas quality tracking Version: 1.1 Date: 09/12/2025

In the following snippet code, you will distinguish a std::vector vds and a lambda function called add_vertex
(see line 6), which internally calls the boost::add_vertex. The first one is used for the storage of all nodes
created at the add_vertex call and it will be used in the following for the definition of the edges. For the
sake of simplicity, the lambda add_vertex will not be further explained, but keep in mind it is needed for the
management of internal pointers in the vertex properties, associated to its non-pipe elements.

1static void
2make_init_vertex(infrastructure_graph& igraph, std::vector<vertex_descriptor>& vds)
3{
4 auto add_vertex = [&](vertex_properties&& vp)
5 {
6 auto v = boost::add_vertex(igraph);
7 igraph[v] = std::move(vp);
8 return v;
9 };

10

11 // Insert station config (name, no., pressure, flux, height)
12 vds.push_back(add_vertex(vertex_properties("station 0", 0, 5000.,-60, 10.)));
13 vds.push_back(add_vertex(vertex_properties("station 1", 1, 0., 20, 20.)));
14 vds.push_back(add_vertex(vertex_properties("station 2", 2, 0., 25, 30.)));
15 vds.push_back(add_vertex(vertex_properties("station 3", 3, 0., 35, 40.)));
16 vds.push_back(add_vertex(vertex_properties("station 4", 4, 0., 50, 50.)));
17}

6.1.3 Add pipes specification

Let us now continue with the pipes specification using the values in Tab. 8.

Nodes Pipe properties
In Out L[m] D[m] epsi[m]

Pi
pe

s

0 0 1 80.0 0.6 1.2e-5
1 1 3 90.0 0.5 1.3e-5
2 3 2 100.0 0.4 1.4e-5
3 1 2 110.0 0.3 1.5e-5
4 3 4 120.0 0.2 1.6e-5

Table 8: Parameters concerning pipe specification.

In order to add the properties, first create an object of type edge_properties instantiating it with the data
related to the pipes: length, diameter and factor epsi. Afterwards, the edges of the graph are created using
the boost::add_edges function while insertions of the pipes properties are given as parameters. The first two
entrances (arguments) are the nodes defining the edge (two first columns in Tab. 8) followed by the object with
its corresponding properties.

1static void
2make_init_pipes(infrastructure_graph& igraph, std::vector<vertex_descriptor>& vds)
3{
4 edge_properties ep0 = {pipe_type::pipe, 0, 80, 0.6, 1.2e-5};
5 edge_properties ep1 = {pipe_type::pipe, 1, 90, 0.5, 1.3e-5};

The research leading to these results has received funding from Horizon Europe, the European Union’s
Framework Programme for Research and Innovation under grant agreement no 101111888. 37 of 56

D4.4 – Open-source fluid-dynamic model
with gas quality tracking Version: 1.1 Date: 09/12/2025

6 edge_properties ep2 = {pipe_type::pipe, 2, 100, 0.4, 1.4e-5};
7 edge_properties ep3 = {pipe_type::pipe, 3, 110, 0.3, 1.5e-5};
8 edge_properties ep4 = {pipe_type::pipe, 4, 80, 0.2, 1.6e-5};
9

10 boost::add_edge(vds[0], vds[1], ep0, igraph);
11 boost::add_edge(vds[1], vds[3], ep1, igraph);
12 boost::add_edge(vds[3], vds[2], ep2, igraph);
13 boost::add_edge(vds[1], vds[2], ep3, igraph);
14 boost::add_edge(vds[3], vds[4], ep4, igraph);
15}

6.1.4 Incidence matrix A

The incidence matrix, as well as the graph, carries information about the connection between nodes and pipes.
Hence, it is directly built from graph and used in the linear system on Section 6.3. See also Fig. 6. It is also used
to exploit vectorization in some parts of the code, instead of calling the graph. The complete implementation
is written in Incidence.h.

Pipes
0 1 2 3 4

N
od

es

0 1
1 -1 1 1
2 -1 -1
3 -1 1 1
4 -1

Table 9: Incidence matrix based on the graph in Fig. 6.

Hands-on: Recall first to create a graph with the specification, as proposed in the previous examples. For
this case, an slightly modification is done to summarize all in a unique function make_init_graph.

1 int main()
2 {
3 // Define graph
4 infrastructure_graph graph;
5 make_init_graph(graph);
6

7 // Build the incidence matrix A
8 incidence inc(graph);
9

10 // Get and print (std::cout) incidene matrix
11 std::cout << "Incidence A: \n" << inc.matrix() << std::endl;
12 std::cout << "Incidence A (only inlet): \n" << inc.matrix_in()<< std::endl;
13 std::cout << "Incidence A (only outlet): \n" << inc.matrix_out()<< std::endl;
14

15 return 0;
16 }

6.2 Stations
The nodes referred to as "stations" are those ones on which a external boundary condition is imposed. They
rely on constraints that regulate either flux or pressure, depending on the nature of the station. A detailed

The research leading to these results has received funding from Horizon Europe, the European Union’s
Framework Programme for Research and Innovation under grant agreement no 101111888. 38 of 56

D4.4 – Open-source fluid-dynamic model
with gas quality tracking Version: 1.1 Date: 09/12/2025

description of the possible nodal station types is given in 4.1. The list there provided is not exhaustive and
developers can in principle add further stations with their control modes. As shown in Figure 6.2, stations can
be of the exit/entry type with respect to the flux L, while junctions (not defined as stations) impose the sole
requirement that L = 0 which is not exogenous but embedded in their definition as "junction".

In what follows, we denote the control mode of a station as a boundary condition that imposes either
pressure or flux with values specified by the user or fixed according to the type of station. Additional
constraints regarding design parameters, user-defined set-points or user-defined parameters are also possible.
The design parameters and the user-defined set-points are denoted henceforth as "hard constraints", since a
violation leads to a change of the control mode. In contrast, the user-parameters are denoted as "soft constraints",
since a violation triggers only a warning. These might represent the desired operating ranges thus the warning
message returns an message about this "non critical" violation.

Nodal station which are able to change its control mode upon a violation of an hard constraint are modelled
as multi-state stations.

Entry Stations Exit Stations Junctions

Control by pressure or inflow Control by outflow

Table 10: Classification of nodes by the direction of the external mass flow rate

Let us use a hypothetical gate station, whose operation is shown schematically in Figure 7, to aid in the
exposition of the representation of a general station. The three boxes represent different types of behaviour,
mainly defined by the control mode or boundary condition (BC), along with additional constraints specific to
each case. Each of this behaviours is hereafter referred to as a state. Transitions from one state to another
occur when hard constraints are violated. Each state encapsulates information about the condition imposed
according to the control type, as well as the associated operational constraints and limits.

BC: p(t) = pset

HARD:
L(t) ≤ 0

SOFT:
L(t) ≤ Lmin
L(t) ≥ Lmax
p(t) ≤ pmax
p(t) ≥ pmin

BC: L(t) = 0

HARD:
p(t) ≥ pset

SOFT:
L(t) ≤ Lmin
L(t) ≥ Lmax
p(t) ≤ pmax
p(t) ≥ pmin

State 0 State 1

BC:

HARD:

State 2

Station

SOFT:

Figure 7: Shematic operation of a hypothetical 3-state station.

In shimmer++, we defined a station as a collection of states by using a vector container, that allows to add
as many states are needed to capture the behaviour of the station.

class station
{

std::vector<state> states_;

void set_state(const state& s);

The research leading to these results has received funding from Horizon Europe, the European Union’s
Framework Programme for Research and Innovation under grant agreement no 101111888. 39 of 56

D4.4 – Open-source fluid-dynamic model
with gas quality tracking Version: 1.1 Date: 09/12/2025

};

Each state is defined as a collection of constraints.

struct state
{

constraint boundary;
constraint hards;
std::vector<constraint> softs;

};

class constraint
{

hardness_type hardness_;
constraint_type type_;
vector_t values_;

};

In order to add a new kind of station, a function must be created in the file boundary.h using either an object
of type one_state_station or multiple_states_station.

6.2.1 One state station

For the sake of simplicity, let us add as an example the consumption_wo_press. Since there are no switch
states, this station is defined as a one state station object. Inside the function only a state is defined, which
implies a boundary, a hard constraint and the soft constraints. The function build_user_constraints defines
the state components for each of the user-defined constraints, in an analogous manner to what was done for
boundary and hard constraint types. The only difference is that hardness_type::SOFT must be used and
multiple constraints are allowed.

template<typename VALUE>
one_state_station
make_consumption_wo_press(const VALUE& vals,

const std::vector<pair_input_t>&user_limits)
{

// Define the state components
auto s0_bnd = constraint(hardness_type::BOUNDARY, // Set as boundary

constraint_type::L_EQUAL, // Only L_EQUAL or P_EQUAL
vals); // Boundary condition values

auto s0_int = constraint(hardness_type::HARD, // Set as hard constraints
constraint_type::L_GREATER_EQUAL, // Inequalities
0.0); // Limit of the inequality

auto s0_ext = build_user_constraints(user_limits); // Create soft constraints

// Create the state
auto s0 = state(s0_bnd, s0_int, s0_ext);

// Define the object consumption_station and give it a name
one_state_station consumption_station("CONSUMPTION_WO_PRESSURE");

The research leading to these results has received funding from Horizon Europe, the European Union’s
Framework Programme for Research and Innovation under grant agreement no 101111888. 40 of 56

D4.4 – Open-source fluid-dynamic model
with gas quality tracking Version: 1.1 Date: 09/12/2025

// Add the state to the station
consumption_station.set_state(s0);

return consumption_station;
}

6.2.2 Multiple states station

For station with more than one state, you should use multiple_state_station class. You are able to define
stations with more than 2 states also. Just use the function set_state to add as many states as you please.

For example a two sate station:

multiple_states_station remi("REMI_WO_BACKFLOW");
remi.set_state(s0);
remi.set_state(s1);

In the case of an hypothetical 3 states station, the quantity of states must be provided.

multiple_states_station hypo("HYPOTHETICAL STATION", 3);
hypo.set_state(s0);
hypo.set_state(s1);
hypo.set_state(s2);

The complete definition of the station is done as shown for the one_state_station

template<typename VALUE_TYPE>
multiple_states_station
make_remi_wo_backflow(const VALUE_TYPE& Pset,

const std::vector<pair_input_t>& user_limits_s0,
const std::vector<pair_input_t>& user_limits_s1)

{
using hard_t = hardness_type;
using constr_t = constraint_type;

// 1. STATES
// 1.1 Define the first state
auto s0_bnd = constraint(hard_t::BOUNDARY, constr_t::P_EQUAL, Pset);
auto s0_int = constraint(hard_t::HARD, constr_t::L_LOWER_EQUAL, 0.0);
auto s0_ext = build_user_constraints(user_limits_s0);

// 1.2 Define the second state
auto s1_bnd = constraint(hard_t::BOUNDARY, constr_t::L_EQUAL, 0.0);
auto s1_int = constraint(hard_t::HARD, constr_t::P_GREATER_EQUAL, Pset);
auto s1_ext = build_user_constraints(user_limits_s1);

// 1.3 Create states
auto s0 = state(s0_bnd, s0_int, s0_ext);
auto s1 = state(s1_bnd, s1_int, s1_ext);

The research leading to these results has received funding from Horizon Europe, the European Union’s
Framework Programme for Research and Innovation under grant agreement no 101111888. 41 of 56

D4.4 – Open-source fluid-dynamic model
with gas quality tracking Version: 1.1 Date: 09/12/2025

// 2. STATION
// 2.1 Create station
multiple_states_station remi("REMI_WO_BACKFLOW");

// 2.2 Add states
remi.set_state(s0);
remi.set_state(s1);

return remi;
}

6.3 Numerical methods stage
The starting point for modelling gas fluid dynamics is the Navier-Stokes equations, along with some common
model simplifications used in gas pipeline networks analysis. Here, we draw only the more general key points
needed for the presentation of the tool. Let (v, p) be the velocity and pressure, then the standard model
describing a fluid flow through a gas network is given by

∂ρ

∂t
+

∂(vρ)

∂x
= 0,

∂ρv

∂t
+

∂

∂x

(
ρv2 + p

)
+

λ

2D
ρv|v|+ ρg sinα = 0.

(3)

where D denotes the diameter and α the inclination angle of the pipe. The first assumption used is unidi-
mensional (1-D) flow through the pipes, which implies that radial variations are neglected. Another common
simplification concerns gas transport and distribution, which it is typically supposed to occur within an isother-
mal process. This assumption holds in general due to the stability of the soil temperature where pipelines are
normally installed. Situations in which the isothermicity assumpion is weaker are cases of open-air pipelines
which are exposed to local weather, the proximity of an outlet section of a compression or a gas regulation
station and underwater gasducts. However, overall this assumption seems to be a trade-off which allows avoid-
ing to solve the energy equation leaving the problem of gas flow simulation as a pressure-velocity coupled
problem, based on the coupled solution of the continuity equation (mass conservation equation) and of the
momentum equation. The second main assumption is the creeping motion one, which derives from the low
gas velocity within the pipeline with respect to the gas speed of sound (generally: 25m/s vs ≈ 400m/s). This
allows to neglect the convective term. Some estimations of pressure drop error based on these assumptions
are discussed in [3]. A schematic resume of the modelling is shown in Fig. 8. The assumption above applied
on the flow equation, that is applied to a pipeline (or a pipeline section) whose length is ∆x. The continuity
equation is instead applied to each node of the network, where the mass balance is performed over the volume
Vi. A complete derivation of the modelling system can be found in [3].

The research leading to these results has received funding from Horizon Europe, the European Union’s
Framework Programme for Research and Innovation under grant agreement no 101111888. 42 of 56

D4.4 – Open-source fluid-dynamic model
with gas quality tracking Version: 1.1 Date: 09/12/2025

Continuity

Figure 8: Schematic transient gas network model.

The resulting variables after linearization and discretization are pressure p and mass flow rate Lrate (Gext

in the scheme) attached to the node volumes, and flux G attached to pipe volumes. In Shimmer++, these set of
variables are all gathered in an structure named "variable" as follows

1 struct variable
2 {
3 vector_t pressure;
4 vector_t flux;
5 vector_t L_rate;
6

7 // Constructors
8 variable();
9 variable(const vector_t&p, const vector_t&f ,const vector_t&l);

10 };

The structure of the methodology for the numerical methods stage can be seen as an outer loop that handles
the unsteady (transient) time advancement, an inner loop solving the gas fluid dynamics, and a step dedicated
to the quality tracking (see also Fig. 2) .

In Fig.8, the friction-losses term in the flow equation (the fourth term from the left) has been modeled
through the Darcy-Weisbach equation, as it is evident form the expression. This equation express the pressure
losses due to the pipe-wall friction as a function of the fluid density, the squared of its velocity, some geometrical
parameters and a so-called friction factor λ. This term is in general a function of the pipeline inner wall roughness
εi, the inner diameter Di, and the Reynolds Number Re, denoting the regime of the fluid flow. The Reynolds
number is in turn a function of the fluid density, its velocity, the pipe diameter and the dynamic viscosity µ.

Consequently, besides the coupled mass-momentum equations, further relations are needed, specifically

• the friction factor correlation

• the viscosity correlation for a gas-mixture

• the Equation of State for the determination of the compressibility factor.

As for the latter, the need for an Equation of States emerges to set a correlation between gas pressure and
density, as it is schematically displayed in Fig.8.

The research leading to these results has received funding from Horizon Europe, the European Union’s
Framework Programme for Research and Innovation under grant agreement no 101111888. 43 of 56

D4.4 – Open-source fluid-dynamic model
with gas quality tracking Version: 1.1 Date: 09/12/2025

Remark. The gas network transport solver, hereafter referred as the time solver and defined in Section 6.5, is designed to
take as C++ template parameters the equation of state and the viscosity, thereby enabling the use of different formulations
for each. The friction factor might adopt a similar template-approach, instead of a solely function. Future developments
may easily extend this methodology to achieve a more flexible and consistent framework.

In the next sections, these correlation are briefly illustrated, enabling the user/developer to possibly modify
them.

6.3.1 Friction factor

In the literature, there is a wide range of mathematical models to describe the friction factor. Shimmer++ relies
on the Cheng formula correlation [2], written as follows

1

λ
=

(
Re

64

)α [
1.8 log

(
Re

6.8

)]2(1−α)β [
2.0 log

(
3.7D

ε

)]2(1−α)(1−β)
,

with shorthand notation:

α =

(
1 +

(
Re

2720

)9
)−1

, β =

(
1 +

(
Re ε

160D

)2
)−1

.

where Re is the Reynolds number, D the inner diameter and of the pipe and ε is the internal roughness of the
pipe-wall.

Extensions to other models (e.g. HOFER, Colebrook-White etc.) can be easily added by substitution of the
implementation of the Cheng formula shown here below.
See the pipe configuration file shimmer/shimmer++/src/solver/pipe_calculator.cpp.

1double
2friction_factor_average(const edge_properties& pipe, const double & Temperature,
3 const double & flux, const double & mu)
4{
5 auto Re = std::abs(flux) * pipe.diameter / (pipe.area() * mu) ;
6

7 auto eps_over_d = pipe.friction_factor / pipe.diameter;
8 auto a = 1.0 / (1.0 + std::pow(Re / 2720.0, 9));
9 auto b = 1.0 / (1.0 + std::pow(Re * eps_over_d/160.0, 2.0));

10

11 auto t0 = 3.7 / eps_over_d;
12 auto t1 = std::pow(64.0 / Re, a) ;
13 auto t2 = std::pow(1.8 * std::log10(Re/6.8), 2.0 * (a -1.0) * b);
14 auto t3 = std::pow(2.0 * std::log10(t0), 2.0 * (a - 1.0) * (1.0 - b));
15

16 return t1 * t2 * t3;
17}

6.3.2 Viscosity

At the present time, only a viscosity model accounting for complex composition of gases is supported. It is
here labeled in honor to one of the authors, Kukurugya. The alternative for more simplified problems is the
constant viscosity model, that cannot be modified at running time and it is set accordingly as µ = 1e−5 [Pa ·s].
See the pipe configuration file shimmer/shimmer++/src/solver/viscosity.cpp.

The research leading to these results has received funding from Horizon Europe, the European Union’s
Framework Programme for Research and Innovation under grant agreement no 101111888. 44 of 56

D4.4 – Open-source fluid-dynamic model
with gas quality tracking Version: 1.1 Date: 09/12/2025

1 enum viscosity_type
2 {
3 Kukurugya,
4 Constant,
5 };

Hands-on: The type of viscosity is given as a template parameter to the viscosity function as shown
hereafter. Notice that the viscosity takes the same temperature for each edge in the graph. This is in agreement
with the isothermal hypothesis of the gas network. However, straightforward modifications can be done if
variations in space for temperature are desired.

1 int main()
2 {
3 // Average temperature
4 double Tm = 293.15; // [K]
5

6 // Define graph
7 infrastructure_graph graph;
8 make_init_graph(graph);
9

10 // Compute viscosity
11 std::cout << "mu_k: \n" << viscosity<viscosity_type::Kukurugya>(Tm, graph);
12 std::cout << "mu_c: \n" << viscosity<viscosity_type::Constant>(Tm, graph);
13

14 return 0;
15 }

6.3.3 Equation of state - Gas dynamics relations

Industry have been using modifications to ideal gas state to accommodate to their applications and constraints.
A compilation of this bunch of equations used by industrial operators was gathered in [5]. Some common
formulas are named under acronyms to identify them, from where the most common ones are PAPAY, AGA-8,
sGERG-88 and GERG-2008. In this work, we use the PAPAY formula and the GERG-2008 equation.

The PAPAY formula [6] indeed is a correlation for the compressibility factorZ known to be valid for pressure
up to 150 [barg]. The formulation is as follows

Z = 1− 3.52

(
p

pc

)
exp

[
−2.260

(
T

Tc

)]
+ 0.274

(
p

pc

)2

exp

[
−1.878

(
T

Tc

)]
,

where pc and Tc are the critical pressure and critical temperature of the mono-component gas, respectively.
Extensions of the PAPAY correlation to multicomponent gas mixtures are possible by using the pseudo-critical
pressures and temperatures for the gas mixtures. In Shimmer++, only the equation for methane (CH4) is
provided, as other complex gases can be modelled using the GERG-2008.

The GERG-2008 equation is instead the correct equation to be adopted in case of multi-component based
natural gas modelling. It is a relative recent equation of state written in terms of the Helmholtz free energy. It
is used as an ISO standard and it is known to be highly flexible with the number of components considered for
the mixture. The full description of the equation is given in [1]. The standard implementation is provided by
the AGA8 repository maintained by NIST and has been adapted for our purposes.

To review the available equations of state or to include a new one, refer to the project file
shimmer/shimmer++/src/solver/gas_law.h.

The research leading to these results has received funding from Horizon Europe, the European Union’s
Framework Programme for Research and Innovation under grant agreement no 101111888. 45 of 56

https://github.com/usnistgov/AGA8

D4.4 – Open-source fluid-dynamic model
with gas quality tracking Version: 1.1 Date: 09/12/2025

Hands-on: To include a new equation of state, a derived class inheriting from the base class equation_of_
state, must be implemented. Here below, we show only some guidelines of the base class, to see the com-
plete/accurate implementation we refer the reader to the file shimmer/shimmer++/src/solver/gas_law.h.

1class equation_of_state
2{
3 virtual void initialization(linearized_fluid_solver *) = 0;
4 virtual void mixture_molar_mass(const matrix_t&, const matrix_t&) = 0;
5 virtual auto molfrac_2_massfrac(const infrastructure_graph&, const incidence&) = 0;
6 virtual auto massfrac_2_molfrac(const matrix_t&, const matrix_t&) = 0;
7 virtual auto speed_of_sound(linearized_fluid_solver *) const = 0;
8};

Example of the derived class for the PAPAY equation of state

1class papay: public equation_of_state
2{
3public:
4 papay();
5

6 void initialization(linearized_fluid_solver *lfs);
7 void mixture_molar_mass(const matrix_t&, const matrix_t&);
8 auto molfrac_2_massfrac(const infrastructure_graph&, const incidence&);
9 auto massfrac_2_molfrac(const matrix_t&, const matrix_t&);

10 vector_t compute_Z(double temperature, const vector_t& pressure) const;
11

12 auto speed_of_sound(linearized_fluid_solver *lfs) const;
13};

6.4 Fluid solver
We denote as fluid solver the innermost iteration loop where the Navier-Stokes equations are solved following
the ideas presented in [3], Section 4 and schematized in Fig.8. The resulting pair of discretized equations are
shown in Fig. 9.

Continuity

Figure 9: Discretized mass and momentum equations.

The linear system resulting after linearization and discretization of the Navier-Stokes equations can be
represented as in Fig.10.

The research leading to these results has received funding from Horizon Europe, the European Union’s
Framework Programme for Research and Innovation under grant agreement no 101111888. 46 of 56

D4.4 – Open-source fluid-dynamic model
with gas quality tracking Version: 1.1 Date: 09/12/2025

Φ A I p Fp

ADP −R 0 G FG

0 L Fb

=

Diagonal matrix

Figure 10: Algebraic system after linearization of the fluid dynamic equations.

where I stands for the identity matrix and recall that A stands for the incidence matrix, R stands for the
resistance matrix which incorporates both the fluid-dynamic resistance Rf and the inertia resistance RI , which
is relevant for unsteady (transient) simulation problems, while it is zero when the steady-state simulation is
addressed. See Fig.8 for the specific definition of the two terms for the resistance and [3] for the step-by-step
matrices construction. The code implementation search to mimic the algebraic system in Fig. 10.

1void linearized_fluid_solver::run(...)
2{
3 var_.pressure = var_guess.pressure;
4 var_.flux = var_guess.flux;
5 var_.L_rate = vector_t::Zero(num_nodes_);
6

7 eos->initialization(this);
8

9 for(size_t iter=0;iter<=MAX_ITERS;iter++)
10 {
11 press_pipes_ = average(var_.pressure, inc_);
12 auto [c2_nodes, c2_pipes] = eos->speed_of_sound(this);
13

14 auto mass_system = continuity(...);
15 auto mom_system = momentum(...);
16 auto bnd_system = boundary(...);
17

18 auto [LHS, rhs]= assemble(mass_system, mom_system, bnd_system);
19

20 Eigen::SparseLU<sparse_matrix_t> solver;
21 solver.compute(LHS);
22 vector_t sol = solver.solve(rhs);
23

24 if (convergence(sol))
25 return;
26 }
27}

The fluid solver accommodates steady and unsteady runs, depending on the setting of the input parameters.
The object is constructed using

linearized_fluid_solver lfs(n, unsteady, tol, dt, temperature, mu, inc, graph);

The research leading to these results has received funding from Horizon Europe, the European Union’s
Framework Programme for Research and Innovation under grant agreement no 101111888. 47 of 56

D4.4 – Open-source fluid-dynamic model
with gas quality tracking Version: 1.1 Date: 09/12/2025

The input parameters are listed here below

• Integer n: denotes the time interval tn. For steady runs n = 0.

• timestep ∆t: only needed in case of transient runs.

• unsteady: false if steady state, true in unsteady state.

• tolerance: set the tolerance for the convergence of the iterative solver

• temperature: constant network temperature

• viscosity mu: see Section 6.3.2

• incidence inc: see Section 6.1.4

• graph: see Section 6.1

To find the variables for the fluid flow in an steady state, make timestep=0 and unsteady=false. The iterative
solver is performed by the fluid solver run function

lfs.run(area_pipes, var0, var, &eos);

It requires an initial object variable var0, that acts either as an initial condition in the unsteady or as a guess
variable in the steady state.

Hands-on: For the complete example check unit_tests/test_fluid_solver.cpp.

1 int main()
2 {
3 // 1. Create the arguments needed for the init of the linearized fluid solver
4 // 1.1 Numerical and physical setting
5 bool unsteady = true;
6 double temperature = 293.15; // [K]
7 double dt = 180.0; // [s]
8 double tol = 1.E-04;
9

10 // 1.2 Graph and derived data
11 infrastructure_graph graph;
12 make_init_graph(graph);
13 incidence inc(graph);
14 auto mu = viscosity<viscosity_type::Kukurugya>(temperature, graph);
15

16 // 2. Create the arguments needed to run the fluid solver
17 vector_t area_pipes = area(graph);
18

19 gerg_aga gerg_eos;
20 gerg_eos.mixture_molar_mass(graph, inc);
21

22 // 3. Fluid dynamics solver
23 linearized_fluid_solver lfs(0, unsteady, tol, dt, temperature, mu, inc, graph);
24 lfs.run(area_pipes, var, var, &gerg_eos);
25

26 return 0;
27 }

The research leading to these results has received funding from Horizon Europe, the European Union’s
Framework Programme for Research and Innovation under grant agreement no 101111888. 48 of 56

D4.4 – Open-source fluid-dynamic model
with gas quality tracking Version: 1.1 Date: 09/12/2025

6.5 Time solver
The advance in time is implemented in the time solver, see time_solver.hpp, which allows for the steady and
unsteady (transient) state. It corresponds to the outer loop of the numerical methods stage. At the moment of
the creation of this time solver object, the viscosity model along with the equation of state must be provided
as template parameter, i.e. at compile time. At the moment of the writing of this document, only two models
are available GERG-2008 and PAPAY [6], the latter for pure methane only. Thus, assuming constant viscosity
model, the two available options are as follows:

time_solver<gerg_aga, viscosity_type::Constant> ts(graph, ...);

or

time_solver<papay, viscosity_type::Constant> ts(graph, ...);

To initialize the object, physical and numerical properties that remain unchanged during the simulation
must be provided, as the temperature of the network which is assumed to be constant. The time solver is
divided into: the initialization and the advancement steps. The first aims at solving a physical initial condition
by solving a steady fluid-dynamic iteration, provided a guess solution and a tolerance (tol_std) are given. The
second step is devoted to evolution in time and therefore the number of steps num_steps, the timestep dt and
the tolerance tol for the transient fluid-dynamic iterations must be provided.

Hands-on: For the complete example check unit_tests/test_time_solver.cpp.

1 int main()
2 {
3 infrastructure_graph graph;
4 make_init_graph(graph);
5

6 //Define the type o time solver: eq of state and viscosity model
7 using time_solver_t = time_solver<papay, viscosity_type::Constant>;
8 // Initialize time solver object
9 time_solver_t ts(graph, temperature);

10 // Run simulation with steady state
11 ts.initialization(guess_std, dt_std, tol_std);
12 // Run simulation with unsteady state
13 ts.advance(dt, num_steps, tol);
14

15 return 0;
16 }

6.6 Quality tracking
This section is devoted to the description of the model and the numerical discretization of the flow of a mixture
of various gaseous species, notably the quality tracking. A Lagrangian coordinates approach was proposed in
[7]. Despite its novelty and its ability to capture discontinuities, the method is prone to cumulative errors, as is
pointed out in [8]. Let us take as an example the simple gas network shown in Figure 11, which illustrates non
uniform refinement along the network pipelines.

The research leading to these results has received funding from Horizon Europe, the European Union’s
Framework Programme for Research and Innovation under grant agreement no 101111888. 49 of 56

D4.4 – Open-source fluid-dynamic model
with gas quality tracking Version: 1.1 Date: 09/12/2025

1

4

3

2

5

Figure 11: Example of a gas network. Color scheme: magenta (nodes) and teal (pipes). Circle with numbers
denote the stations and dots represent fictitious stations due to the refinement.

We consider a gas mixture composed of Nα ideal gas constituents. Each constituent is modeled as an ideal
compressible gas. In addition, they are assumed to be inviscid and chemically inert.
Remark. Vaccum is not allowed in any part of the pipeline.

We additionally assumed thermal equilibrium. Let ρ and p denote the density and pressure of the mixture,
respectively, with the later computed from the equation of state. Let v denote the one-dimensional velocity of
the mixture in a pipe and also the individual velocity of each species, as the effects of molecular diffusion are
neglected [9]. Let ρα denote the individual material density and the partial density dα of theα-th gas component.
The latter is defined as an additive partial density such the global mixture density can be expressed as follows

ρ =

Nα∑
α=1

dα and 1 =

Nα∑
i=1

dα
ρ
.

Here, the second assertion is just a direct consequence of the first. The partial density of the gas is related to
the individual material density ρα, as dα = ρα · γα, where γα := Vα/V denotes the volumetric fraction acting
here as correction factor.

6.6.1 The model for transport of gas species

Henceforth, the governing equations we consider are the one-dimensional mass and momentum Euler equa-
tions, where chemical reactions sources are not taken into account since the gas components are chemically
inert. A well-known presentation of the mass conservations is written in terms of the mass fraction quantities:

∂ρYα

∂t
+

∂

∂x
(ρYαv) = 0, α ∈ {1, · · · , Nα}

∂ρv

∂t
+

∂

∂x
(ρv2 + p) = 0.

(4)

In [9], it was also shown that the system (4) can be rewritten using the density additive property as follows

∂ρ

∂t
+

∂

∂x
(ρv) = 0,

∂ρYα

∂t
+

∂

∂x
(ρYαv) = 0, α ∈ {1, · · · , Nα − 1},

∂ρv

∂t
+

∂

∂x
(ρv2 + p) = 0,

(5)

but also that the first and the second equations result in the non-conservative mass fraction equation
∂Yα

∂t
+ v

∂Yα

∂x
= 0, α ∈ {1, · · · , Nα − 1}, (6)

implying that mass fractions Yα are being transported. This is found in the literature as passive transport, see
[10].

The research leading to these results has received funding from Horizon Europe, the European Union’s
Framework Programme for Research and Innovation under grant agreement no 101111888. 50 of 56

D4.4 – Open-source fluid-dynamic model
with gas quality tracking Version: 1.1 Date: 09/12/2025

6.6.2 Transport through pipes: quality tracking

Let us consider as model problem the one-dimensional conservation law for a quantity q(x, t)with fluxF (q(x, t))

∂q

∂t
+

∂F (x, t)

∂x
= 0. (7)

Let
⋃
Ii be the partitioning of a generic pipe domain L, where Ii =]xi−1/2, xi+1/2[denotes the interval with

size ∆xi = xi+1/2 − xi−1/2 and barycenter xi = (xi+1/2 + xi−1/2)/2. The time horizon is denoted by T > 0 Let

Qn
i =

1

∆xi

∫
Ii

q(x, tn)dx.

using the Lax-Wendroff second order scheme to solve hyperbolic equations, the general discretized form is

Qn+1
i −Qn

i

∆t
+

F
n+1/2
i+1/2 − F

n+1/2
i−1/2

∆x
= 0. (8)

The Lax-Wendroff method was introduced in the seminal work [11] in 1960 for hyperbolic conservation laws
and named after the two authors. Upon defining the quantities

F
n−1/2
i−1/2 =

1

2

(
Fn
i−1 + Fn

i

)
− 1

2

∆t

∆x
An

i−1/2
(
Fn
i − Fn

i−1
)
, F

n+1/2
i+1/2 =

1

2

(
Fn
i+1 + Fn

i

)
− 1

2

∆t

∆x
An

i+1/2

(
Fn
i+1 − Fn

i

)
.

the Lax-Wendroff method can be implemented in the standard one step formulation which requires the com-
putation of A = ∂qf(q(x, t)).

The Lax-Wendroff method is derived for conservative equations. Thus, we do not use the non-conservative
transport equation (6) and instead we solve the system in a decoupled fashion (5). Let ri = Qi−Qi−1

Qi+1−Qi
, then we

use the flux limiter Φ(r) named Superbee and defined as follows

Φ(r) = max(0, min(1, 2r), min(2, r)) .

6.6.3 Nodal mass balance: Admixing

For the quality tracking, we assume nodes with volume. Thus, accumulation of mass, momentum or energy
can happen. We also assume perfect mixing, so with all input flows a homogeneous mixture is created and it
is distributed proportionally to all output pipes. Let Ω• be a node domain with boundary Γ•, which can be
further seen as Γ• = Γ•+ ∪ Γ•−, being the cross section inlet and outlet boundaries of the pipe, respectively.∫

Ω•

∂ρYα

∂t
+

∫
Ω•

div(ρvYα) = 0, (9)

The second term can be reformulated by the Divergence Theorem on the α-th mass fraction flux. As the
boundary of a pipe domain can be seen has the collection of faces f , the previous equation can be easily
reformulated as ∑

f⊂Γ•
(ρvYαA)|f · nf =

∑
f⊂Γ•+

(ϕYαA)|f −
∑

f⊂Γ•−

(ϕYαA)f

with ρv · n = ϕn with n unitary value positive and negative on Γ•+ and Γ•−, respectively.∑
f∈Γ•+

(ϕYαA)f = Yα|f•←ṁ•← +
∑

f⊂Γ•+\Γ•←

(ϕYαA)|f ,

∑
f⊂Γ•−

(ϕYαA)|f = Yα|f•→ṁ•→ +
∑

f⊂Γ•−\Γ•→

(ϕYαA)|f ,

The research leading to these results has received funding from Horizon Europe, the European Union’s
Framework Programme for Research and Innovation under grant agreement no 101111888. 51 of 56

D4.4 – Open-source fluid-dynamic model
with gas quality tracking Version: 1.1 Date: 09/12/2025

Remark (Perfect mixing). we assume perfect mixing at the node, thus all output faces, f ⊂ Γ•−, the same mixture is
provided. Whence, the mass fractions on the output faces are equal to the mass fractions on the node, i.e Yα|f = Yα,• for
all f ∈ Γ•−.

f1

4

(ρvA)|f1

(ρvA)|f2 ṁ•→f2 f3

Figure 12: Perfect mixing: mass fractions on output faces f2 and f3 are equal.

Let us now address the temporal term∫
Ω•

∂ρYα

∂t
≈ Ω•

ρn+1
• Y n+1

α,• − ρn•Y
n
α,•

∆t
.

Remark (Variation in time of c2). Using gas relations, the variation in time ∂ρ
∂t could be reformulated as ∂tρ = ∂x(p/c

2).
Hence, ∫

Ω•

∂ρYα

∂t
≈ Ω•

∆t

((p•Yα,•

c2•

)n+1

−
(p•Yα,•

c2•

)n)
.

Thus, putting all togetherΩ•

∆t
ρn+1
• + ṁ•→ +

∑
f⊂Γ•−\Γ•→

(ϕA)|f

Y n+1
α,• =

Ω•

∆t
ρn•Y

n
α,• + Y n

α|f•←ṁ•← +
∑

f⊂Γ•+\Γ•←

(ϕYαA)n|f .

6.6.4 Quality tracking solver

The solver for the quality tracking is similarly defined as the time solver shown in Section 6.5. Thus, an equation
of state and a viscosity law (Section 6.3.2) must be chosen to define the quality tracking type.

using solver_t = shimmer::qt_solver<shimmer::gerg_aga,shimmer::viscosity_type::Constant>;

To create the quality tracking object, 4 arguments are needed:

• infrastructure with the whole information of the network

• temperature of the network

• a boolean specifying if pipes must be refined, default false.

• number of time steps to run an unsteady state

It is important to distinguish steady and transient runs, see Table 6.6.4. In the first one, only admixing is made
on each node, independently of refinement settings. The steady solver iterates until convergence with each
iteration made of a fluid-dynamic run followed by a computation of the mass fractions. In the second case,
the steady case is only intended to find the fluid-dynamics variables on the network as an initial condition.
The initial mass fraction state is set as only methane; therefore, during the transient run, the mixture of gasses
injected into the network will transport and the fluid-dynamics will change accordingly.

solver_t qt(infrastructure, temperature, do_refine, num_steps);

The research leading to these results has received funding from Horizon Europe, the European Union’s
Framework Programme for Research and Innovation under grant agreement no 101111888. 52 of 56

D4.4 – Open-source fluid-dynamic model
with gas quality tracking Version: 1.1 Date: 09/12/2025

Time regime Refinement Mass fraction transport

Steady No Admixing
Yes Admixing

Unsteady No Admixing
Yes Admixing + QT

Recall that config.quality_trackingmust be set true and config.qt_steady is set to false by default. The
variable config.qt_steady is only used in case config.quality_tracking = true.

See the unitary test for the quality tracking solver denoted as /unit_tests/test_qt.

1 //Define the type o time solver: eq of state and viscosity model
2 using solver_t = shimmer::qt_solver<shimmer::gerg_aga,
3 shimmer::viscosity_type::Constant>;
4 // Initialize quality solver object
5 solver_t qt(infra, temperature, refine, num_steps);
6

7 if(steady)
8 {
9 // Run simulation with only admixing

10 qt.steady_state(guess, dt_std, tol_std);
11 }
12 else
13 {
14 // Run Fluid dynamics steady state
15 qt.initialization(guess, dt_std, tol_std);
16 // Run unsteady state
17 qt.advance(dt, tol);
18 }

The research leading to these results has received funding from Horizon Europe, the European Union’s
Framework Programme for Research and Innovation under grant agreement no 101111888. 53 of 56

D4.4 – Open-source fluid-dynamic model
with gas quality tracking Version: 1.1 Date: 09/12/2025

7 Conclusions
This SHIMMER project deliverable highlights the outcome of the Work Package 4, Task 4.2.4 which consisted
in the development of an open-source fluid-dynamic model with gas quality tracking, called Shimmer++.

The model is publicly accessible at the GitHub repository here: https://github.com/shimmerhydrogen/
shimmer Before the finalization of this document, a Demonstration Workshop has been held on line on Nov.
26th 2025 in presence of the research and industrial partners involved in the SHIMMER Project where the
main contents of this deliverble-handbook have been presented and a live demonstration has been given.
The presentation is among the supporting material within the GitHub repository. It has been successfully
validated against a commercial software and data from the industrial partners of the Work Package 4, as per
the programmed milestone of the project.

The Shimmer++ model has been selected as a Key Exploitable Results of the project to participate to the EU
Booster Service program for the exploitation.

Now it is publicly available and the authors see promising possibilities to exploit this outcome already
starting by the academic and research environment in which it has been developed, as it is a powerful tool to be
used in training students, early researcher and professional to get acquinted to the simulation of gas networks
under non-conventional gas injection. Furthermore, it can be use to advance the research activities on gas
networks.

Its features of transparency and flexibility which have driven the coding desing are aimed to allow re-
searchers and industrial stakeholders to expand further, improve and integrate the model with others, to
contribute to the technological advancement in the field of gas infrastructures.

The research leading to these results has received funding from Horizon Europe, the European Union’s
Framework Programme for Research and Innovation under grant agreement no 101111888. 54 of 56

https://github.com/shimmerhydrogen/shimmer
https://github.com/shimmerhydrogen/shimmer

D4.4 – Open-source fluid-dynamic model
with gas quality tracking Version: 1.1 Date: 09/12/2025

References
[1] O. Kunz and W. Wagner, “The gerg-2008 wide-range equation of state for natural gases and other mixtures:

An expansion of gerg-2004,” Journal of Chemical & Engineering Data, vol. 57, no. 11, pp. 3032–3091, 2012.

[2] N.-S. Cheng, “Formulas for friction factor in transitional regimes,” Journal of Hydraulic Engineering, vol. 134,
no. 9, pp. 1357–1362, 2008.

[3] M. Cavana, Gas network modelling for a multi-gas system. PhD thesis, Politecnico di Torino, Sept. 2020. PhD
thesis, 32nd cycle (2016–2019).

[4] T. A. Gunawan, M. Cavana, P. Leone, and R. F. Monaghan, “Solar hydrogen for high capacity, dispatchable,
long-distance energy transmission – a case study for injection in the greenstream natural gas pipeline,”
Energy Conversion and Management, vol. 273, p. 116398, 2022.

[5] T. Guillot, Equation of State, pp. 743–744. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015.

[6] J. Pápay, “A termeléstechnológiai paraméterek változása a gáztelepek müvelése során,” OGIL Müszaki
Tudományos Közlemények, pp. 267–273, 1968.

[7] M. Chaczykowski, F. Sund, P. Zarodkiewicz, and S. M. Hope, “Gas composition tracking in transient
pipeline flow,” Journal of Natural Gas Science and Engineering, vol. 55, pp. 321–330, 2018.

[8] Z. Zhang, I. Saedi, S. Mhanna, K. Wu, and P. Mancarella, “Modelling of gas network transient flows
with multiple hydrogen injections and gas composition tracking,” International Journal of Hydrogen Energy,
vol. 47, no. 4, pp. 2220–2233, 2022.

[9] B. Larrouturou and L. Fezoui, “On the equations of multi-component perfect or real-gas inviscid flow,” in
Nonlinear Hyperbolic Problems (C. Carasso, P. Charrier, B. Hanouzet, and J. Joly, eds.), vol. 1402 of Lecture
Notes in Mathematics, pp. 69–98, Berlin, Heidelberg: Springer, 1989.

[10] F. Bouchut, Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws: and Well-Balanced
Schemes for Sources. Frontiers in Mathematics, Birkhäuser Basel, 2004.

[11] P. Lax and B. Wendroff, “Systems of conservation laws,” Communications on Pure and Applied Mathematics,
vol. 13, no. 2, pp. 217–237, 1960.

The research leading to these results has received funding from Horizon Europe, the European Union’s
Framework Programme for Research and Innovation under grant agreement no 101111888. 55 of 56

D4.4 – Open-source fluid-dynamic model
with gas quality tracking Version: 1.1 Date: 09/12/2025

The research leading to these results has received funding from Horizon Europe, the European Union’s
Framework Programme for Research and Innovation under grant agreement no 101111888. 56 of 56

	Executive Summary
	Introduction
	Purpose of the document
	Intended readership
	Structure of this document

	Background, aims and motivation
	Installation
	Preparing a Linux environment
	Preparing a Windows environment
	Building shimmer++
	Running Shimmer++
	Shimmer++ organization

	Model description
	Nodal station types
	Pressure regulated entry station without backflow
	Mass Flow regulated entry station with pressure control
	Junctions
	Exit Stations (consumption points)

	Branch element types
	Compression Station
	Pipelines

	Overall Network Model Rationale
	Nomenclature and unit of measurments

	Network Data Files
	Database schema: nodal elements (stations)
	Station types
	Stations List
	Limits and profiles: Pressure regulated entry station w/o backflow (ReMi station)
	Limits and profiles: Mass flow regulated entry station w/ pressure control (Injection station)
	Limits and profiles: Consumption station
	Gases
	Gas molar fractions

	Database schema: branch elements (pipelines and non-pipe elements)
	Branch element types
	Plain pipes
	Compressor stations

	Database schema: network initial conditions
	Initial conditions for nodes
	Initial conditions for branches

	Database schema: simulation outputs
	Automatic NDF Creation: sample code in Matlab environment

	Developer zone
	In memory representation
	Define the graph
	Add nodes specification
	Add pipes specification
	Incidence matrix A

	Stations
	One state station
	Multiple states station

	Numerical methods stage
	Friction factor
	Viscosity
	Equation of state - Gas dynamics relations

	Fluid solver
	Time solver
	Quality tracking
	The model for transport of gas species
	Transport through pipes: quality tracking
	Nodal mass balance: Admixing
	Quality tracking solver

	Conclusions

		2025-12-09T09:07:37+0000
	Certified by Adobe Acrobat Sign

